Skip to main content
Log in

Higher Gauging and Non-invertible Condensation Defects

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss invertible and non-invertible topological condensation defects arising from gauging a discrete higher-form symmetry on a higher codimensional manifold in spacetime, which we define as higher gauging. A q-form symmetry is called p-gaugeable if it can be gauged on a codimension-p manifold in spacetime. We focus on 1-gaugeable 1-form symmetries in general 2+1d QFT, and gauge them on a surface in spacetime. The universal fusion rules of the resulting invertible and non-invertible condensation surfaces are determined. In the special case of 2+1d TQFT, every (invertible and non-invertible) 0-form global symmetry, including the \({\mathbb {Z}}_2\) electromagnetic symmetry of the \({\mathbb {Z}}_2\) gauge theory, is realized from higher gauging. We further compute the fusion rules between the surfaces, the bulk lines, and lines that only live on the surfaces, determining some of the most basic data for the underlying fusion 2-category. We emphasize that the fusion “coefficients” in these non-invertible fusion rules are generally not numbers, but rather 1+1d TQFTs. Finally, we discuss examples of non-invertible symmetries in non-topological 2+1d QFTs such as the free U(1) Maxwell theory and QED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. For the most part of this paper, we only consider relativistic quantum systems in Euclidean signature, in which case the distinction between an operator that acts on the Hilbert space and a defect that extends in time is not very sharp. We will therefore use these two terms interchangeably. In non-relativistic systems, however, global symmetries are not necessarily generated by topological operators. Furthermore, the distinction between an operator and a defect is important. For instance, see [2] for a recent discussion that emphasizes this distinction in certain non-relativistic systems.

  2. In Sect. 6, we will discuss examples of these defects where they are realized as the condensation of a Higgs field that only live on a higher codimensional manifold. These examples include the U(1) Maxwell theory, the U(1) Chern–Simons theory, and the \({\mathbb {Z}}_2\) gauge theory. This Higgs presentation of the condensation defect justifies the terminology at least in the above examples.

  3. The observables of a bosonic/non-spin QFT do not require a choice of the spin structure. In contrast, a fermionic/spin QFT can only be defined on spin manifolds and its observables depend on the choice of the spin structure.

  4. In contrast, a \({\mathbb {Z}}_2\) symmetry generated by a semion or an anti-semion is not even 1-gaugeable, and the would-be condensation defect is inconsistent.

  5. Mathematically, d-dimensional topological defects form a module over the fusion ring of d-dimensional TQFTs. This is because given a d-dimensional topological defect we can stack a decoupled d-dimensional TQFT to it and get another topological defect.

  6. We thank T. D. Décoppet for pointing out these reference to us.

  7. Here and throughout we define a q-form symmetry to be a symmetry generated by a codimenion-\((q+1)\) topological operator, rather than by the requirement that it acts on q-dimensional obejcts. For an ordinary q-form symmetry, the two definitions coincide since the action of the symmetry on the charged objects is given by the canonical linking [1]. Condensation defects, however, do not act by canonical linkings, and we need to clarify which definition we are using. We thank Daniel Harlow for discussions on related points.

  8. In this paper, as it is common in the condensed matter physics literature, we only restrict ourselves to robust TQFTs with no nontrivial local operators. This excludes BF theories of a 2-form gauge field and a compact scalar, which describes symmetry-breaking phases.

  9. In fact, in the context of 2+1d SET, it is common that the global symmetries act nontrivially in the microscopic model, but act trivially both on the line defects and the local operators in the continuum TQFT limit.

  10. Here we assume L is a simple line, i.e., it cannot be decomposed into non-negative linear combinations of other lines. Also, throughout the paper, we assume that the only bulk topological local operator is the identity operator.

  11. In the current paper, we only determine the action of the surface defects (which include the 0-form symmetries) on the topological lines (i.e., the low-energy limit of the anyons). We leave the freedom in choosing the symmetry fractionalization class, which is an essential piece of data in SET and in the G-crossed modular tensor category, for future studies.

  12. One needs to choose an appropriate boundary condition, such as the topological Dirichlet boundary condition, for the discrete gauge fields in defining such an interface.

  13. In the condensed matter literature [84,85,86] in 2+1d, gauging a 1-form symmetry in a codimension-0 region is commonly referred to as anyon condensation. For this reason, it is natural to define the gauging of a higher-form symmetry on a higher codimensional manifold as higher condensation. See also footnote 2 for further justification of this terminology.

  14. The only exception is in Sect. 6.6, where we discuss higher gauging in QED with a Dirac fermion.

  15. The set of topological lines in a non-topological QFT only forms a braided tensor category, but not necessarily a modular tensor category. Generally, there are other non-topological lines that have nontrivial correlation functions with the topological lines. For example, 2+1d QED with a charge 2 scalar has a non-anomalous \({\mathbb {Z}}_2\) 1-form global symmetry, which forms a braided fusion category that is not modular. The line charged under this \({\mathbb {Z}}_2\) 1-form symmetry is a non-topological Wilson line.

  16. For more general non-invertible lines, the topological spin is defined as \(\theta (a) = (R^{a, {\bar{a}}}_1)^{-1}\) where \({\bar{a}}\) is the orientation-reversal of a.

  17. Because of this relation, B(ab) is sometimes referred to as the double-braiding phase (or monodromy phase), and R as the braiding. We will loosely refer to both of them as braiding.

  18. We will sometimes suppress the dependence of \(S(\Sigma )\) on the 2-dimensional manifold \(\Sigma \) and write it simply as S.

  19. Note that generally there is no canonical way to gauge a 1-form symmetry on a surface, similar to the situation of gauging in 1+1d. In other words, the choice of the discrete torsion forms a torsor, rather than a group with a natural identity. For example, see the discussion around equation (5.34).

  20. Throughout the paper, L always denotes a general, not necessarily topological line, while a or \(\eta ^a\) denote topological lines.

  21. Quantum symmetry is also known as the dual or the orbifold symmetry.

  22. See [3] for a review and generalizations to the cases of gauging non-abelian discrete symmetries and non-invertible lines.

  23. More precisely, (3.10) specifies a junctions between a and the higher quantum symmetry lines on S.

  24. These maps are called \(\alpha \)-induction in the mathematical literature, and are denoted by \(\alpha ^+(a) = a \times S\) and \(\alpha ^-(a) =S \times a\). They first appeared in subfactor theory [99, 100], and then in category theory [101, 102]. Finally, for their interpretation in terms of topological defects see [7, 15, 103].

  25. This is because \(b\times S\) and \(S \times a\) are simple lines (i.e., they cannot be decomposed into other lines living on the surface), therefore they have a junction between them if and only if they are identical. For general non-invertible topological lines \(\ell ,\ell '\) we have \(S \cdot \ell = \sum _{\ell '} \textrm{dim Hom}(\ell ' \times S, S \times \ell ) \, \ell '\).

  26. This can also be seen using (3.3) as follows. Since \(1=B(\eta , \eta ^2)= B(\eta ,\eta )^2 = 1/\theta (\eta )^4\), we find that \(\theta (\eta )\) must be a fourth root of unity.

  27. Gauging a fermion line in the whole spacetime results in a spin QFT. Since we only consider non-spin QFT in most of this paper, we do not allow ourselves to gauge a fermion line in the whole spacetime. Instead, we will see momentarily that we can gauge the fermion line on a 2-dimensional surface, which gives a topological surface defect in a non-spin QFT.

  28. We thank Po-Shen Hsin for pointing this reference to us.

  29. As discussed below (2.1), \(P_+\) can be thought of as the condensation of a 0-form symmetry U on a codimension-1 manifold.

  30. This is because the cohomology group classifying the anomaly of a \({\mathbb {Z}}_N\) 0-form symmetry is given by \(H^4(B{\mathbb {Z}}_N,U(1))=1\), which is trivial.

  31. Compared to the general discussion in Sect. 3.1, the labels \(a,b,\ldots \) for the invertible topological lines here and below are additive rather than multiplicative. We hope this change of convention will not cause too much confusions.

  32. This is related to the spin selection rule in 1+1d CFT. In [4, 17, 97], it is shown that an ordinary \({\mathbb {Z}}_N\) global symmetry in 1+1d is anomaly-free if and only if the operator living at the end of the line (e.g., the disorder operator) has Lorentz spin \(s=h-{\bar{h}}\in {\mathbb {Z}}/N\).

  33. In general the quantum symmetry might be a non-trivial extension of \({\mathbb {Z}}_N/{\mathbb {Z}}_n\) by \(\widehat{{\mathbb {Z}}}_n\). As explained in [3, Section 5.3.2] (see also [105]), the extension is given by the mixed anomaly between the \({\mathbb {Z}}_n\) subgroup and \({\mathbb {Z}}_N/{\mathbb {Z}}_n\) before gauging. However, this anomaly is trivial in this case since the \({\mathbb {Z}}_N\) 1-form symmetry is 1-gaugeable.

  34. A simple example is to choose \(N=4\) and \(n=2\). The order 2 higher quantum symmetry line \({\hat{\eta }}_2{{\tilde{\eta }}}_2\) is anomalous and depends on \(\gamma \) modulo 4, rather than 2.

  35. The symmetry groups \({\mathbb {Z}}_N/{\mathbb {Z}}_n\) and \({\widehat{{\mathbb {Z}}}}_n\) are individually anomaly free and there is only a mixed anomaly between them in the sense that the product group \({\mathbb {Z}}_N/{\mathbb {Z}}_n \times {\widehat{{\mathbb {Z}}}}_n\) is anomalous.

  36. Here \(\gamma = 0 \mod n\) for a 1-cycle \(\gamma \) means that there exists another 1-cycle \(\gamma '\in H_1(\Sigma , {\mathbb {Z}})\) such that \(\gamma = n \gamma '\).

  37. When \(a=a'\), this fusion rule simplifies to

    $$\begin{aligned} \begin{aligned} {\hat{\eta }}_n^a \times {\hat{\eta }}_{n'}^{a} = \left( {\mathcal {Z}}_{\textrm{gcd}(n,n',k\ell )} \right) \, {\hat{\eta }}_{\frac{\textrm{gcd}(n,n',k\ell )nn'}{\textrm{gcd}(n,n')^2}}^a \,. \end{aligned} \end{aligned}$$
    (5.26)

    Also when \(k=0\) (i.e., when the \({\mathbb {Z}}_N\) symmetry is non-anomalous), the fusion simplifies:

    $$\begin{aligned} {\hat{\eta }}_{n}^a \times {\hat{\eta }}_{n'}^{a'} = \left( {\mathcal {Z}}_{\textrm{gcd}(n,n')}, W^{a-a'} \right) \, {\hat{\eta }}_{\textrm{lcm}(n,n')}^{\frac{pan'+p'a'n}{\textrm{gcd}(n,n')}} \,. \end{aligned}$$
    (5.27)
  38. In fact, whenever gcd\((N,k)=1\), \(S_N\) and \(\eta \) form a dihedral group \(D_{2N}\) even when N is not prime, but there are additional non-invertible surfaces \(S_n\) with n|N.

  39. Since \(1=B(\eta _1^{N_1},\eta _2)= B(\eta _1,\eta _2)^{N_1}\) and similarly \(1=B(\eta _1,\eta _2)^{N_2}\), we see that \(k_{12}\in {\mathbb {Z}}_{\text {gcd}(N_1,N_2)}\).

  40. The intersection number \(\langle \gamma _1,\gamma _2\rangle \in {\mathbb {Z}}_{\text {gcd}(N_1,N_2)}\) is defined by viewing \(\gamma _1, \gamma _2\) as elements in \(H_1(\Sigma , {\mathbb {Z}}_{\text {gcd}(N_1,N_2)})\).

  41. Note that this is compatible with the braiding phases in (5.30), since \(R^{a,b}_{a+b}R^{b,a}_{a+b} = B(a,b) \equiv B(\eta _1^{a_1}\eta _2^{a_2}, \eta _1^{b_1}\eta _2^{b_2}) \).

  42. The duality is given by \(dA\sim \star d \phi \), where \(\phi \) is a compact scalar. See, for instance, [108].

  43. On the other hand, it has a mixed anomaly with the magnetic U(1) 0-form symmetry.

  44. Relatedly, this algebra admits a 1-dimensional representation \(\langle S_N \rangle = N\).

  45. SHS would like to thank Yichul Choi and Ho Tat Lam for enlightening discussions on this point and collaborations on a related project [69] in 3+1d.

  46. By noting \(N = \ell nn' / \textrm{gcd}(n,n')\), we see that \(\textrm{gcd}(N/n,N/n') = \ell \), \(\textrm{gcd}:(n,N/n') = {\textrm{gcd}(n,n',\ell ) n \over \textrm{gcd}(n,n')}\) and \(\textrm{gcd}(n',N/n) = {\textrm{gcd}(n,n',\ell ) n' \over \textrm{gcd}(n,n')}\). Using these identities we find (6.13) is equivalent to the fusion rule presented in [103].

  47. Our action differs from [103] by the last term. As a result, their action does not have the full left and right gauge symmetries implemented by \(\alpha _L,\alpha _R\), while ours does.

  48. In Appendix A.2 we derive the fusion rule for the surfaces in the more general \({\mathbb {Z}}_p\) gauge theory with prime p. The translation between the notation here and there is given by:

    $$\begin{aligned} S_{\textrm{e}}= S_{{\mathbb {Z}}_{2}^{(\infty )}} , \quad S_{\textrm{m}}= S_{{\mathbb {Z}}_{2}^{(0)}} , \quad S_\psi = S_{{\mathbb {Z}}_{2}^{(1)}} , \quad S_{\textrm{em}} = S_{({\mathbb {Z}}_2 \times {\mathbb {Z}}_2)^{(\infty )}} , \quad S_{\textrm{me}}= S_{({\mathbb {Z}}_2 \times {\mathbb {Z}}_2)^{(0)}}. \end{aligned}$$
  49. Suppose \({{{\mathcal {N}}}}_1\times {{{\mathcal {N}}}}_2 = {{{\mathcal {N}}}}_3\), then using the definition of the fusion product in Fig. 5 and the orientation reversal (3.5), we have \(\overline{{{\mathcal {N}}}}_2 \times \overline{{{\mathcal {N}}}}_1 = \overline{{{\mathcal {N}}}}_3\).

  50. We slightly abuse the notation and use \(\vert {B} \rangle \) for both the abstract boundary condition and also the boundary state on \(\Sigma \), i.e.  \(\vert {B} \rangle \in {\mathcal {H}}(\Sigma )\).

  51. \(\Lambda _{\textbf{A}}(\Sigma )\) and \(\Lambda _{\textbf{B}}(\Sigma )\) are maximal isotropic subgroups of \(H_1(\Sigma ,{\mathbb {Z}}_2)\) that are called Lagrangian subgroups in the literature.

  52. The insertion of anyons gives a delta function, and the normalization is given by the partition function on \({\overline{Y}} \sqcup _\Sigma Y = (S^2 \times S^1)^{\# g}\) where \(\#\) denotes connected sum. Note that \(Z\left( (S^2 \times S^1)^{\# g} \right) = { Z( S^2 \times S^1 )^g \over Z( S^3)^{g-1}} = 2^{g-1}\), since \(Z(S^3) = 1/2\).

  53. Note that the composite boundary states \(\vert {B_{\textrm{e}}, \gamma } \rangle \) for different \(\gamma \) span a basis for the Hilbert space on \(\Sigma \) (and similarly for \(\vert {B_{\textrm{m}}, \gamma } \rangle \)). The basis \(|\alpha _{\textrm{e}},\alpha _{\textrm{m}}\rangle \) correspond to choosing a Lagrangian subgroup of \(H_1(\Sigma ,{\mathbb {Z}})\) (i.e. the \({\textbf{A}}\)-cycles) whereas the basis \(\vert {B_{\textrm{e}}, \gamma } \rangle \) correspond to the Lagrangian subgroup of anyons generated by \(\eta _{\textrm{e}}\).

  54. SHS thanks Pranay Gorantla, Ho Tat Lam, and Nati Seiberg for discussions on the Lagrangians of boundary conditions in discrete gauge theory.

  55. Throughout the paper, we have assumed the 2+1d QFT to be a bosonic QFT, with the exception of this subsection. Most of our previous results for the bosonic QFT still apply here.

  56. In the UV, there are additional global symmetries including the magnetic U(1) symmetry and the time-reversal symmetry. We will not discuss them here.

  57. More precisely, the algebra needs to be both commutative and separable with a unique unit. Such an algebra is the same as the connected \(\acute{e}\)tale algebra of [102, Definition 3.1] and rigid algebra with trivial spin of [127, Section 3]. Here we refer to them simply as commutative algebra objects.

  58. This definition of the algebra object was originally introduced in [101, 128]. In the literature, it is also called the symmetric special Frobenius algebra in [7, 129] and the \(\Delta \)-separable Frobenius algebra in [63]. See [3, 41] for recent discussions in the context of non-invertible 0-form symmetries in 1+1d.

  59. There are nontrivial SETs associated with symmetries that do not permute the lines but have a nontrivial symmetry fractionalization class (see, for instance, [76]). We do not discuss the freedom of choosing a symmetry fractionalization class in this paper.

  60. Mathematically, two algebras \({{\mathcal {A}}}\) and \({{\mathcal {A}}}'\) are Mortia equivalent iff the category of (right) \({{\mathcal {A}}}\)-modules and \({{\mathcal {A}}}'\)-modules are the same (left) module categories over the modular tensor category of all topological lines [128]. The condensation defects only depend on the Morita equivalent class of the algebra objects [63, 129].

  61. Here we only consider unitary 2+1d TQFTs with no non-trivial local operator.

  62. In the context of fully extended TQFT, the necessary and sufficient condition for existence of a topological boundary condition was proven rigorously in [131].

References

  1. Gaiotto, D., Kapustin, A., Seiberg, N., Willett, B.: Generalized Global Symmetries. JHEP 02, 172 (2015). arXiv:1412.5148

    ADS  MathSciNet  MATH  Google Scholar 

  2. Gorantla, P., Lam, H.T., Seiberg, N., Shao, S.-H.: Global Dipole Symmetry, Compact Lifshitz Theory, Tensor Gauge Theory, and Fractons. arXiv:2201.10589

  3. Bhardwaj, L., Tachikawa, Y.: On finite symmetries and their gauging in two dimensions. JHEP 03, 189 (2018). arXiv:1704.02330

    ADS  MathSciNet  MATH  Google Scholar 

  4. Chang, C.-M., Lin, Y.-H., Shao, S.-H., Wang, Y., Yin, X.: Topological defect lines and renormalization group flows in two dimensions. JHEP 01, 026 (2019). arXiv:1802.04445

    ADS  MathSciNet  MATH  Google Scholar 

  5. Verlinde, E.P.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    ADS  MATH  Google Scholar 

  6. Petkova, V.B., Zuber, J.B.: Generalized twisted partition functions. Phys. Lett. B 504, 157–164 (2001). arXiv:hep-th/0011021

    ADS  MathSciNet  MATH  Google Scholar 

  7. Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators 1. Partition functions. Nucl. Phys. B 646, 353–497 (2002). arXiv:hep-th/0204148

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bachas, C., Gaberdiel, M.: Loop operators and the Kondo problem. JHEP 11, 065 (2004). arXiv:hep-th/0411067

    ADS  MathSciNet  Google Scholar 

  9. Fuchs, J., Gaberdiel, M.R., Runkel, I., Schweigert, C.: Topological defects for the free boson CFT. J. Phys. A 40, 11403 (2007). arXiv:0705.3129

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bachas, C., Monnier, S.: Defect loops in gauged Wess-Zumino-Witten models. JHEP 02, 003 (2010). arXiv:0911.1562

    ADS  MathSciNet  MATH  Google Scholar 

  11. Ji, W., Shao, S.-H., Wen, X.-G.: Topological Transition on the Conformal Manifold. Phys. Rev. Res. 2(3), 033317 (2020). arXiv:1909.01425

    Google Scholar 

  12. Lin, Y.-H., Shao, S.-H.: Duality Defect of the Monster CFT. J. Phys. A 54(6), 065201 (2021). arXiv:1911.00042

    ADS  MathSciNet  MATH  Google Scholar 

  13. Gaiotto, D., Lee, J.H., Wu, J.: Integrable Kondo problems. JHEP 04, 268 (2021). arXiv:2003.06694

    ADS  MathSciNet  MATH  Google Scholar 

  14. Gaiotto, D., Kulp, J.: Orbifold groupoids. JHEP 02, 132 (2021). arXiv:2008.05960

    ADS  MathSciNet  MATH  Google Scholar 

  15. Komargodski, Z., Ohmori, K., Roumpedakis, K., Seifnashri, S.: Symmetries and strings of adjoint QCD\(_{2}\). JHEP 03, 103 (2021). arXiv:2008.07567

    ADS  MathSciNet  MATH  Google Scholar 

  16. Gaiotto, D., Lee, J.H., Vicedo, B., Wu, J.: Kondo line defects and affine Gaudin models. JHEP 01, 175 (2022). arXiv:2010.07325

    ADS  MathSciNet  MATH  Google Scholar 

  17. Lin, Y.-H., Shao, S.-H.: \(\mathbb{Z} _N\) symmetries, anomalies, and the modular bootstrap. Phys. Rev. D 103(12), 125001 (2021). arXiv:2101.08343

    ADS  Google Scholar 

  18. Thorngren, R., Wang, Y. Fusion Category Symmetry II: Categoriosities at \(c\) = 1 and Beyond. arXiv:2106.12577

  19. Burbano, I.M., Kulp, J., Neuser, J.: Duality Defects in \(E_8\). arXiv:2112.14323

  20. Grimm, U., Schutz, G.M.: The Spin 1/2 XXZ Heisenberg chain, the quantum algebra U(q)[sl(2)], and duality transformations for minimal models. J. Statist. Phys. 71, 921–964 (1993). arXiv:hep-th/0111083

    ADS  MathSciNet  MATH  Google Scholar 

  21. Feiguin, A., Trebst, S., Ludwig, A.W.W., Troyer, M., Kitaev, A., Wang, Z., Freedman, M.H.: Interacting anyons in topological quantum liquids: The golden chain. Phys. Rev. Lett. 98(16), 160409 (2007). arXiv:cond-mat/0612341

    ADS  Google Scholar 

  22. Hauru, M., Evenbly, G., Ho, W.W., Gaiotto, D., Vidal, G.: Topological conformal defects with tensor networks. Phys. Rev. B 94(11), 115125 (2016). arXiv:1512.03846

    ADS  Google Scholar 

  23. Aasen, D., Mong, R.S.K., Fendley, P.: Topological defects on the lattice I: the Ising model. J. Phys. A 49(35), 354001 (2016). arXiv:1601.07185

    MathSciNet  MATH  Google Scholar 

  24. Buican, M., Gromov, A.: Anyonic chains, topological defects, and conformal field theory. Commun. Math. Phys. 356(3), 1017–1056 (2017). arXiv:1701.02800

    ADS  MathSciNet  MATH  Google Scholar 

  25. Aasen, D., Fendley, P., Mong, R.S.K.: Topological Defects on the Lattice: Dualities and Degeneracies. arXiv:2008.08598

  26. Inamura, K.: On lattice models of gapped phases with fusion category symmetries. JHEP 03, 036 (2022). arXiv:2110.12882

    ADS  MathSciNet  MATH  Google Scholar 

  27. Koide, M., Nagoya, Y., Yamaguchi, S.: Non-invertible topological defects in 4-dimensional \(\mathbb{Z}_2\) pure lattice gauge theory. PTEP 2022(1), 013B03 (2022). arXiv:2109.05992

    MATH  Google Scholar 

  28. Huang, T.-C., Lin, Y.-H., Ohmori, K., Tachikawa, Y., Tezuka, M.: Numerical evidence for a Haagerup conformal field theory. arXiv:2110.03008

  29. Vanhove, R., Lootens, L., Van Damme, M., Wolf, R., Osborne, T., Haegeman, J., Verstraete, F.: A critical lattice model for a Haagerup conformal field theory. arXiv:2110.03532

  30. Liu, Y., Zou, Y., Ryu, S.: Operator fusion from wavefunction overlaps: Universal finite-size corrections and application to Haagerup model. arXiv:2203.14992

  31. Ji, W., Wen, X.-G.: Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions. Phys. Rev. Res. 2(3), 033417 (2020). arXiv:1912.13492

    Google Scholar 

  32. Kong, L., Lan, T., Wen, X.-G., Zhang, Z.-H., Zheng, H.: Algebraic higher symmetry and categorical symmetry - a holographic and entanglement view of symmetry. Phys. Rev. Res. 2(4), 043086 (2020). arXiv:2005.14178

    Google Scholar 

  33. Frohlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Kramers–Wannier duality from conformal defects. Phys. Rev. Lett. 93, 070601 (2004). arXiv:cond-mat/0404051

    ADS  MathSciNet  Google Scholar 

  34. Frohlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007). arXiv:hep-th/0607247

    ADS  MathSciNet  MATH  Google Scholar 

  35. Frohlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Defect lines, dualities, and generalised orbifolds. In: 16th International Congress on Mathematical Physics, vol. 9 (2009). arXiv:0909.5013

  36. Choi, Y., Cordova, C., Hsin, P.-S., Lam, H. T., Shao, S.-H.: Non-Invertible Duality Defects in 3+1 Dimensions. arXiv:2111.01139

  37. Kaidi, J., Ohmori, K., Zheng, Y.: Kramers–Wannier-like duality defects in (3+1)D gauge theories. Phys. Rev. Lett. 128(11), 111601 (2022). arXiv:2111.01141

    ADS  MathSciNet  Google Scholar 

  38. Nguyen, M., Tanizaki, Y., Ünsal, M.: Semi-Abelian gauge theories, non-invertible symmetries, and string tensions beyond \(N\)-ality. JHEP 03, 238 (2021). arXiv:2101.02227

    ADS  MathSciNet  MATH  Google Scholar 

  39. Carqueville, N., Runkel, I.: Orbifold completion of defect bicategories. Quantum Topol. 7, 203 (2016). arXiv:1210.6363

    MathSciNet  MATH  Google Scholar 

  40. Brunner, I., Carqueville, N., Plencner, D.: A quick guide to defect orbifolds. Proc. Symp. Pure Math. 88, 231–242 (2014). arXiv:1310.0062

    MathSciNet  MATH  Google Scholar 

  41. Huang, T.-C., Lin, Y.-H., Seifnashri, S.: Construction of two-dimensional topological field theories with non-invertible symmetries. JHEP 12, 028 (2021). arXiv:2110.02958

    ADS  MathSciNet  MATH  Google Scholar 

  42. Kaidi, J., Komargodski, Z., Ohmori, K., Seifnashri, S., Shao, S.-H.: Higher central charges and topological boundaries in 2+1-dimensional TQFTs. arXiv:2107.13091

  43. Buican, M., Radhakrishnan, R.: Galois orbits of TQFTs: symmetries and unitarity. JHEP 01, 004 (2022). arXiv:2109.02766

    ADS  MathSciNet  MATH  Google Scholar 

  44. Yu, M.: Gauging Categorical Symmetries in 3d Topological Orders and Bulk Reconstruction. arXiv:2111.13697

  45. Benini, F., Copetti, C., Di Pietro, L.: Factorization and Global Symmetries in Holography. arXiv:2203.09537

  46. Thorngren, R., Wang, Y.: Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases. arXiv:1912.02817

  47. Misner, C.W., Wheeler, J.A.: Classical physics as geometry: gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Annals Phys. 2, 525–603 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Polchinski, J.: Monopoles, duality, and string theory. Int. J. Mod. Phys. A 19S1, 145–156 (2004). arXiv:hep-th/0304042

    MathSciNet  MATH  Google Scholar 

  49. Banks, T., Seiberg, N.: Symmetries and strings in field theory and gravity. Phys. Rev. D 83, 084019 (2011). arXiv:1011.5120

    ADS  Google Scholar 

  50. Harlow, D., Ooguri, H.: Symmetries in quantum field theory and quantum gravity. Commun. Math. Phys. 383(3), 1669–1804 (2021). arXiv:1810.05338

    ADS  MathSciNet  MATH  Google Scholar 

  51. Rudelius, T., Shao, S.-H.: Topological operators and completeness of spectrum in discrete gauge theories. JHEP 12, 172 (2020). arXiv:2006.10052

    ADS  MathSciNet  MATH  Google Scholar 

  52. Heidenreich, B., McNamara, J., Montero, M., Reece, M., Rudelius, T., Valenzuela, I.: Non-invertible global symmetries and completeness of the spectrum. JHEP 09, 203 (2021). arXiv:2104.07036

    ADS  MathSciNet  MATH  Google Scholar 

  53. McNamara, J.: Gravitational Solitons and Completeness. arXiv:2108.02228

  54. Kong, L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436–482 (2014). arXiv:1307.8244

    ADS  MathSciNet  MATH  Google Scholar 

  55. Kong, L., Wen, X.-G.: Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions. arXiv:1405.5858

  56. Else, D.V., Nayak, C.: Cheshire charge in (3+1)-dimensional topological phases. Phys. Rev. B 96(4), 045136 (2017). arXiv:1702.02148

    ADS  Google Scholar 

  57. Gaiotto, D., Johnson-Freyd, T.: Condensations in higher categories. arXiv:1905.09566

  58. Johnson-Freyd, T.: (3+1)D topological orders with only a \(\mathbb{Z}_2\)-charged particle. arXiv:2011.11165

  59. Douglas, C.L., Reutter, D.J.: Fusion 2-categories and a state-sum invariant for 4-manifolds (2018). arXiv:1812.11933

  60. Décoppet, T.D.: The Relative Deligne Tensor Product over Pointed Braided Fusion Categories, arXiv e-prints (2022). arXiv:2203.10331

  61. Décoppet, T.D.: Weak Fusion 2-Categories (2021). arXiv:2103.15150

  62. Hsin, P.-S., Turzillo, A.: Symmetry-enriched quantum spin liquids in (3 + 1)\(d\). JHEP 09, 022 (2020). arXiv:1904.11550

    ADS  MathSciNet  MATH  Google Scholar 

  63. Carqueville, N., Runkel, I., Schaumann, G.: Line and surface defects in Reshetikhin-Turaev TQFT. arXiv:1710.10214

  64. Carqueville, N., Runkel, I., Schaumann, G.: Orbifolds of Reshetikhin-Turaev TQFTs. Theor. Appl. Categor. 35, 513–561 (2020). arXiv:1809.01483

    MathSciNet  MATH  Google Scholar 

  65. Mulevičius, V., Runkel, I.: Constructing modular categories from orbifold data. arXiv:2002.00663

  66. Koppen, V., Mulevicius, V., Runkel, I., Schweigert, C.: Domain walls between 3d phases of Reshetikhin-Turaev TQFTs. arXiv:2105.04613

  67. Carqueville, N., Mulevicius, V., Runkel, I., Schaumann, G., Scherl, D.: Orbifold graph TQFTs. arXiv:2101.02482

  68. Carqueville, N., Mulevicius, V., Runkel, I., Schaumann, G., Scherl, D.: Reshetikhin-Turaev TQFTs close under generalised orbifolds. arXiv:2109.04754

  69. Choi, Y., Cordova, C., Hsin, P.-S., Lam, H. T., Shao, S.-H.: Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions. arXiv:2204.09025

  70. Kong, L., Tian, Y., Zhang, Z.-H.: Defects in the 3-dimensional toric code model form a braided fusion 2-category. JHEP 12, 078 (2020). arXiv:2009.06564

    ADS  MathSciNet  MATH  Google Scholar 

  71. Essin, A.M., Hermele, M.: Classifying fractionalization: symmetry classification of gapped \({\mathbb{z} }_{2}\) spin liquids in two dimensions. Phys. Rev. B 87, 104406 (2013)

    ADS  Google Scholar 

  72. Mesaros, A., Ran, Y.: Classification of symmetry enriched topological phases with exactly solvable models. Phys. Rev. B 87, 155115 (2013)

    ADS  Google Scholar 

  73. Yao, H., Fu, L., Qi, X.-L.: Symmetry fractional quantization in two dimensions (2010). arXiv:1012.4470

  74. Hung, L.-Y., Wen, X.-G.: Quantized topological terms in weak-coupling gauge theories with a global symmetry and their connection to symmetry-enriched topological phases. Phys. Rev. B 87, 165107 (2013)

    ADS  Google Scholar 

  75. Barkeshli, M., Jian, C.-M., Qi, X.-L.: Theory of defects in abelian topological states. Phys. Rev. B 88, 235103 (2013)

    ADS  Google Scholar 

  76. Chen, X., Burnell, F.J., Vishwanath, A., Fidkowski, L.: Anomalous symmetry fractionalization and surface topological order. Phys. Rev. X 5, 041013 (2015). arXiv:1403.6491

    Google Scholar 

  77. Barkeshli, M., Bonderson, P., Cheng, M., Wang, Z.: Symmetry fractionalization, defects, and gauging of topological phases. Phys. Rev. B 100(11), 115147 (2019). arXiv:1410.4540

    ADS  Google Scholar 

  78. Etingof, P., Nikshych, D., Ostrik, V.: with an appendix by Ehud Meir, Fusion categories and homotopy theory. arXiv:0909.3140

  79. Fuchs, J., Priel, J., Schweigert, C., Valentino, A.: On the Brauer Groups of Symmetries of Abelian Dijkgraaf–Witten Theories. Commun. Math. Phys. 339(2), 385–405 (2015). arXiv:1404.6646

    ADS  MathSciNet  MATH  Google Scholar 

  80. Aharony, O., Benini, F., Hsin, P.-S., Seiberg, N.: Chern-Simons-matter dualities with \(SO\) and \(USp\) gauge groups. JHEP 02, 072 (2017). arXiv:1611.07874

    ADS  MathSciNet  MATH  Google Scholar 

  81. Cordova, C., Hsin, P.-S., Seiberg, N.: Global symmetries, counterterms, and duality in Chern–Simons matter theories with orthogonal gauge groups. SciPost Phys. 4(4), 021 (2018). arXiv:1711.10008

    ADS  Google Scholar 

  82. Benini, F., Córdova, C., Hsin, P.-S.: On 2-group global symmetries and their anomalies. JHEP 03, 118 (2019). arXiv:1803.09336

    ADS  MathSciNet  MATH  Google Scholar 

  83. Delmastro, D., Gomis, J.: Symmetries of Abelian Chern–Simons theories and arithmetic. JHEP 03, 006 (2021). arXiv:1904.12884

    ADS  MathSciNet  MATH  Google Scholar 

  84. Bais, F.A., Slingerland, J.K.: Condensate induced transitions between topologically ordered phases. Phys. Rev. B 79, 045316 (2009). arXiv:0808.0627

    ADS  Google Scholar 

  85. Kong, L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436–482 (2014). arXiv:1307.8244

    ADS  MathSciNet  MATH  Google Scholar 

  86. Burnell, F.J.: Anyon condensation and its applications. Ann. Rev. Condensed Matter Phys. 9, 307–327 (2018). arXiv:1706.04940

    ADS  Google Scholar 

  87. Moore, G.W., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  88. Kitaev, A.: Anyons in an exactly solved model and beyond. Annals Phys. 321(1), 2–111 (2006). arXiv:cond-mat/0506438

    ADS  MathSciNet  MATH  Google Scholar 

  89. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories i. Sel. Math. New Ser. 16(1), 1–119 (2010)

    MathSciNet  MATH  Google Scholar 

  90. Vafa, C.: Toward classification of conformal theories. Phys. Lett. B 206, 421–426 (1988)

    ADS  MathSciNet  Google Scholar 

  91. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Gomis, J., Komargodski, Z., Seiberg, N.: Phases of adjoint QCD\(_3\) and dualities. SciPost Phys. 5(1), 007 (2018). arXiv:1710.03258

    ADS  Google Scholar 

  93. Hsin, P.-S., Lam, H.T., Seiberg, N.: Comments on one-form global symmetries and their gauging in 3d and 4d. SciPost Phys. 6(3), 039 (2019). arXiv:1812.04716

    ADS  MathSciNet  Google Scholar 

  94. Moore, G.W., Seiberg, N.: Naturality in conformal field theory. Nucl. Phys. B 313, 16–40 (1989)

    ADS  MathSciNet  Google Scholar 

  95. Moore, G.W., Seiberg, N.: Taming the conformal zoo. Phys. Lett. B 220, 422–430 (1989)

    ADS  MathSciNet  Google Scholar 

  96. Brunner, I., Carqueville, N., Plencner, D.: Discrete torsion defects. Commun. Math. Phys. 337(1), 429–453 (2015). arXiv:1404.7497

    ADS  MathSciNet  MATH  Google Scholar 

  97. Lin, Y.-H., Shao, S.-H.: Anomalies and bounds on charged operators. Phys. Rev. D 100(2), 025013 (2019). arXiv:1904.04833

    ADS  MathSciNet  Google Scholar 

  98. Vafa, C.: Quantum symmetries of string vacua. Mod. Phys. Lett. A 4, 1615 (1989)

    ADS  MathSciNet  Google Scholar 

  99. Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–598 (1995). arXiv:hep-th/9411077

    MathSciNet  MATH  Google Scholar 

  100. Bockenhauer, J., Evans, D.E.: Modular invariants, graphs and alpha induction for nets of subfactors. 1. Commun. Math. Phys. 197, 361–386 (1998). arXiv:hep-th/9801171

    ADS  MATH  Google Scholar 

  101. Müger, M.: From subfactors to categories and topology I: Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1–2), 81–157 (2003)

    MathSciNet  MATH  Google Scholar 

  102. Davydov, A., Mueger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. arXiv:1009.2117

  103. Kapustin, A., Saulina, N.: Surface operators in 3d Topological Field Theory and 2d Rational Conformal Field Theory. arXiv:1012.0911

  104. Freed, D.S., Vafa, C.: Global anomalies on orbifolds. Commun. Math. Phys. 110 (1987) 349. [Addendum: Commun. Math. Phys. 117, 349 (1988)]

  105. Tachikawa, Y.: On gauging finite subgroups. SciPost Phys. 8(1), 015 (2020). arXiv:1712.09542

    ADS  MathSciNet  Google Scholar 

  106. Vafa, C.: Modular invariance and discrete torsion on orbifolds. Nucl. Phys. B 273, 592–606 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  107. Vafa, C., Witten, E.: On orbifolds with discrete torsion. J. Geom. Phys. 15, 189–214 (1995). arXiv:hep-th/9409188

    ADS  MathSciNet  MATH  Google Scholar 

  108. Tong, D.: Gauge Theory. Lecture notes, DAMTP Cambridge (2018)

    Google Scholar 

  109. Kapustin, A., Seiberg, N.: Coupling a QFT to a TQFT and duality. JHEP 04, 001 (2014). arXiv:1401.0740

    ADS  Google Scholar 

  110. Kitaev, A.Y.: Fault tolerant quantum computation by anyons. Annals Phys. 303, 2–30 (2003). arXiv:quant-ph/9707021

    ADS  MathSciNet  MATH  Google Scholar 

  111. Alford, M.G., Benson, K., Coleman, S. R., March-Russell, J., Wilczek, F.: The interactions and excitations of nonabelian vortices. Phys. Rev. Lett. 64, 1632 (1990). [Erratum: Phys. Rev. Lett. 65, 668 (1990)]

  112. Preskill, J., Krauss, L.M.: Local discrete symmetry and quantum mechanical hair. Nucl. Phys. B 341, 50–100 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  113. Bucher, M., Lee, K.-M., Preskill, J.: On detecting discrete Cheshire charge. Nucl. Phys. B 386, 27–42 (1992). arXiv:hep-th/9112040

    ADS  MathSciNet  Google Scholar 

  114. Alford, M.G., Lee, K.-M., March-Russell, J., Preskill, J.: Quantum field theory of nonAbelian strings and vortices. Nucl. Phys. B 384, 251–317 (1992). arXiv:hep-th/9112038

    ADS  MathSciNet  Google Scholar 

  115. Lan, T., Wang, J.C., Wen, X.-G.: Gapped Domain Walls, Gapped Boundaries and Topological Degeneracy. Phys. Rev. Lett. 114(7), 076402 (2015). arXiv:1408.6514

    ADS  Google Scholar 

  116. Wen, X.-G.: Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003). arXiv:quant-ph/0205004

    ADS  Google Scholar 

  117. Freed, D.S., Teleman, C.: Topological dualities in the Ising model. arXiv:1806.00008

  118. Lu, Y.-M., Vishwanath, A.: Classification and Properties of Symmetry Enriched Topological Phases: A Chern–Simons approach with applications to Z2 spin liquids (2013). arXiv:1302.2634

  119. Bravyi, S.B., Kitaev, A.Y.: Quantum codes on a lattice with boundary. arxiv:quant-ph/9811052

  120. Kapustin, A., Saulina, N.: Topological boundary conditions in abelian Chern–Simons theory. Nucl. Phys. B 845, 393–435 (2011). arXiv:1008.0654

    ADS  MathSciNet  MATH  Google Scholar 

  121. Kitaev, A., Kong, L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012). arXiv:1104.5047

    ADS  MathSciNet  MATH  Google Scholar 

  122. Levin, M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013). arXiv:1301.7355

    Google Scholar 

  123. Barkeshli, M., Jian, C.-M., Qi, X.-L.: Classification of topological defects in Abelian topological states. Phys. Rev. B 88, 241103 (2013). arXiv:1304.7579

    ADS  Google Scholar 

  124. Turaev, V.G.: Quantum invariants of knots and 3-manifolds. de Gruyter, (2016)

  125. Maldacena, J.M., Moore, G.W., Seiberg, N.: D-brane charges in five-brane backgrounds. JHEP 10, 005 (2001). arXiv:hep-th/0108152

    ADS  MathSciNet  Google Scholar 

  126. Córdova, C., Hsin, P.-S., Seiberg, N.: Time-reversal symmetry, anomalies, and dualities in (2+1)\(d\). SciPost Phys. 5(1), 006 (2018). arXiv:1712.08639

    ADS  Google Scholar 

  127. Kirillov Jr., A., Ostrik, V.: On q analog of McKay correspondence and ADE classification of affine sl(2) conformal field theories. arxiv:math/0101219

  128. Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)

    MathSciNet  MATH  Google Scholar 

  129. Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321, 543–575 (2013). arXiv:1203.4568

    ADS  MathSciNet  MATH  Google Scholar 

  130. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, vol. 205. American Mathematical Soc. (2016)

  131. Freed, D.S., Teleman, C.: Gapped boundary theories in three dimensions. Commun. Math. Phys. 388(2), 845–892 (2021). arXiv:2006.10200

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank M. Cheng, Y. Choi, C. Cordova, T. D. Décoppet, T. Dumitrescu, P. Gorantla, D. Harlow, P.-S. Hsin, J. Kaidi, R. Kobayashi, Z. Komargodski, H. T. Lam, M. Metlitski, R. Radhakrishnan, N. Seiberg, and Y. Wang for interesting discussions. We are grateful to Y. Choi, D. Delmastro, A. Kapustin, R. Kobayashi, and K. Ohmori for helpful comments on a draft. SHS would particularly like to thank Y. Choi and H. T. Lam for numerous enlightening discussions on a related project [69] on higher gauging in 3+1d. SHS would also like to thank P. Gorantla, H. T. Lam, and N. Seiberg for discussions on anyon condensations. KR would like to thank T. Dumitrescu for many useful discussions on this topic. The work of KR is supported by the Mani L. Bhaumik Institute for Theoretical Physics. SS is supported in part by the Simons Foundation grant 488657 (Simons Collaboration on the Non-Perturbative Bootstrap). The authors of this paper were ordered alphabetically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahand Seifnashri.

Additional information

Communicated by C. Schweiger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A More on the Fusion Rules

A More on the Fusion Rules

1.1 A.1 Fusion rules from the higher gauging of \({\mathbb {Z}}_N\) 1-form symmetries

In this appendix we will derive the fusion rule (5.22) between the higher quantum symmetry lines on the condensation surfaces that arise from a 1-gaugeable \({\mathbb {Z}}_N\) 1-form symmetry. The 0-anomaly of the 1-gaugeable \({\mathbb {Z}}_N\) 1-form symmetry is labeled by an integer k (see Sect. 5.1).

$$\begin{aligned} S_n \times S_{n'}\,{ fusion} \end{aligned}$$

As a warm up, we fist derive the fusion rule (5.13) between the condensation surfaces \(S_n\), which come from the higher gauging of the \({\mathbb {Z}}_n\) 1-form symmetry subgroup with n|N. We will place the condensation surfaces on a genus-g surface \(\Sigma _g\) with generating 1-cycles \({\textbf{A}}_{i=1,\dots ,g},{\textbf{B}}_{i=1,\dots ,g} \in H_1(\Sigma _g, {\mathbb {Z}}_N)\).

Let \(n,n'\) be two divisors of N. The fusion of the corresponding condensation surfaces \(S_n\) and \(S_{n'}\) is

$$\begin{aligned} \begin{aligned}&S_{n}(\Sigma _g) \times S_{n'}(\Sigma _g) \\&\quad = \frac{1}{n^g {n'}^g} \sum _{\mu _i ,\nu _i \in {\mathbb {Z}}_n} \sum _{\mu '_i,\nu '_i \in {\mathbb {Z}}_{n'}} e^{2\pi i \frac{kN}{n n'} (\mu _i \nu '_i - \nu _i \mu '_i )} \, \eta \left( \sum _i N(\frac{\mu _i}{n}+\frac{\mu '_i}{n'}) {\textbf{A}}_i + N(\frac{\nu _i}{n}+\frac{\nu '_i}{n'}) {\textbf{B}}_i \right) \, . \end{aligned}\end{aligned}$$
(A.1)

Below we will do a change of variables on \(\mu _i,\nu _i,\mu '_i,\nu '_i\) in order to simplify the above expression.

To proceed, we first note that for any pair of numbers \((\mu ,\mu ') \in {\mathbb {Z}}_n \times {\mathbb {Z}}_{n'}\) we can do the change of variable

$$\begin{aligned} \begin{aligned} \mu&= p \alpha + \frac{n}{\textrm{gcd}(n,n')}\lambda ~,\\ \mu '&= p' \alpha - \frac{n'}{\textrm{gcd}(n,n')}\lambda ~, \end{aligned}\end{aligned}$$
(A.2)

for \(\alpha \in \left\{ 1, \dots , \textrm{lcm}(n,n') \right\} \) and \(\lambda \in {\mathbb {Z}}_{\textrm{gcd}(n,n')}\), where

$$\begin{aligned} p \frac{n'}{\textrm{gcd}(n,n')} + p' \frac{n}{\textrm{gcd}(n,n')} = 1 \end{aligned}$$
(A.3)

for some fixed integers p and \(p'\). Note that (A.2) defines a map from \(\left\{ 1, \dots , \textrm{lcm}(n,n') \right\} \times {\mathbb {Z}}_{\textrm{gcd}(n,n')}\) to \({\mathbb {Z}}_n \times {\mathbb {Z}}_{n'}\) whose inverse is given by

$$\begin{aligned} \begin{aligned} \alpha&= \frac{n'}{\textrm{gcd}(n,n')}\mu + \frac{n}{\textrm{gcd}(n,n')} \mu ' \in {\mathbb {Z}}_{\textrm{lcm}(n,n')} ~,\\ \lambda&= p' \mu - p\mu ' \in {\mathbb {Z}}_{\textrm{gcd}(n,n')}~. \end{aligned}\end{aligned}$$
(A.4)

Therefore we conclude that the map is bijective and hence the change of variable is legitimate.

Now let us apply the change of variable (A.2) to \(\mu _i,\mu _i',\nu _i,\nu _i'\) and write

$$\begin{aligned} \begin{aligned} \mu _i&= p \alpha _i + \frac{n}{\textrm{gcd}(n,n')}\lambda _i ~,\\ \mu '_i&= p' \alpha _i - \frac{n'}{\textrm{gcd}(n,n')}\lambda _i~,\\ \nu _i&= p \beta _i + \frac{n}{\textrm{gcd}(n,n')}\rho _i ~,\\ \nu '_i&= p' \beta _i - \frac{n'}{\textrm{gcd}(n,n')}\rho _i ~, \end{aligned}\end{aligned}$$
(A.5)

where \(\alpha _i,\beta _i \in \left\{ 1, \dots , \textrm{lcm}(n,n') \right\} \), \(\lambda _i,\rho _i \in {\mathbb {Z}}_{\textrm{gcd}(n,n')}\), and \(pn'+p'n=\textrm{gcd}(n,n')\) for some fixed integers p and \(p'\). Using these new set of variables we get

$$\begin{aligned} S_{n}(\Sigma _g)\times S_{n'}(\Sigma _g) = \frac{1}{n^g {n'}^g} \sum _{\begin{array}{c} 1 \le \alpha _i,\beta _i \le \textrm{lcm}(n,n') \\ \lambda _i,\rho _i \in {\mathbb {Z}}_{\textrm{gcd}(n,n')} \end{array}} e^{2\pi i \frac{k\ell }{\textrm{gcd}(n,n')} (\beta _i \lambda _i - \alpha _i \rho _i )} \, \eta \bigg ( \ell (\alpha _i \, {\textbf{A}}_i + \beta _i \, {\textbf{B}}_i ) \bigg ) \, , \end{aligned}$$
(A.6)

where \(\ell = \frac{N}{\textrm{lcm}(n,n')}\). Summing over \(\lambda _i,\rho _i \in {\mathbb {Z}}_{\textrm{gcd}(n,n')}\) gives the Kronecker deltas

$$\begin{aligned} \begin{aligned} \textrm{gcd}(n,n')^{2g} \, \delta _{\, \left( \frac{k\ell }{\textrm{gcd}(n,n')} \alpha _i \mod {\mathbb {Z}}\right) ,0} \, \delta _{\,\left( \frac{k\ell }{\textrm{gcd}(n,n')} \beta _i \mod {\mathbb {Z}}\right) ,0} \end{aligned}\end{aligned}$$
(A.7)

which forces \(\alpha _i\) and \(\beta _i\) to be divisible by \(\frac{\textrm{gcd}(n,n')}{\textrm{gcd}(n,n',k\ell )}\). Therefore we do the replacement \(\alpha _i,\beta _i \mapsto \frac{\textrm{gcd}(n,n')}{\textrm{gcd}(n,n',k\ell )} {\bar{\alpha }}_i, \frac{\textrm{gcd}(n,n')}{\textrm{gcd}(n,n',k\ell )}{\bar{\beta }}_i\) for \(1 \le {\bar{\alpha }}_i,{\bar{\beta }}_i \le \frac{\textrm{gcd}(n,n',k\ell )nn'}{\textrm{gcd}(n,n')^2}\) and get

$$\begin{aligned} S_n(\Sigma _g)\times S_{n'}(\Sigma _g)&= \frac{\textrm{gcd}(n,n')^{2g}}{n^g{n'}^g} \sum _{ 1 \le {\bar{\alpha }}_i,{\bar{\beta }}_i \le \frac{\textrm{gcd}(n,n',k\ell )nn'}{\textrm{gcd}(n,n')^2} } \eta ^{\frac{\ell \, \textrm{gcd}(n,n')}{\textrm{gcd}(n,n',k\ell )}} \Bigg ({\bar{\alpha }}_i \, {\textbf{A}}_i+ {\bar{\beta }}_i \, {\textbf{B}}_i \Bigg ) \, , \nonumber \\&= \left( \textrm{gcd}(n,n',k\ell ) \right) ^g S_{\frac{\textrm{gcd}(n,n',k\ell )nn'}{\textrm{gcd}(n,n')^2}}(\Sigma _g) \, . \end{aligned}$$
(A.8)

We conclude that the fusion algebra is

$$\begin{aligned} S_n \times S_{n'} = \left( {\mathcal {Z}}_{\textrm{gcd}(n,n',k\ell )}\right) \, S_{\frac{\textrm{gcd}(n,n',k\ell )nn'}{\textrm{gcd}(n,n')^2}} \,, \end{aligned}$$
(A.9)

where \(\left( {\mathcal {Z}}_{n}\right) \) stands for the 1+1d \({\mathbb {Z}}_n\) gauge theory.

$$\begin{aligned} {\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b \times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'}\,{ fusion} \end{aligned}$$

Now we will derive the fusion between the higher quantum symmetry lines living on the surfaces (5.22). We put the composite defects \({\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b\) of (5.21) on \(({\bar{\gamma }}, \Sigma )\) and perform the computations covariantly without specifying a basis for \(H_1(\Sigma , {\mathbb {Z}})\):

$$\begin{aligned} \begin{aligned}&{\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b (\bar{\gamma }, \Sigma )\times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'} (\bar{\gamma }, \Sigma ) \\&\quad = \sum _{\begin{array}{c} \gamma \in H_1(\Sigma ,{\mathbb {Z}}_{n}) \\ \gamma ' \in H_1(\Sigma ,{\mathbb {Z}}_{n'}) \end{array}} \frac{e^{ 2\pi i \langle \bar{\gamma }, {a \over n}\gamma + {a' \over n'}\gamma ' \rangle + {2\pi ik \over N}\langle \frac{N}{n}\gamma + b\bar{\gamma }, \frac{N}{n'}\gamma ' + b'\bar{\gamma } \rangle }}{\sqrt{|H_1(\Sigma ,{\mathbb {Z}}_n)||H_1(\Sigma ,{\mathbb {Z}}_{n'})|}} \, \eta \left( \frac{N}{n}\gamma +\frac{N}{n'}\gamma ' + (b+b')\bar{\gamma } \right) \,. \end{aligned}\end{aligned}$$
(A.10)

Next, we apply the same change of variable as in (A.2) to \(\gamma \in H_1(\Sigma ,{\mathbb {Z}}_{n})\) and \(\gamma ' \in H_1(\Sigma ,{\mathbb {Z}}_{n'})\). We write

$$\begin{aligned} \begin{aligned} \gamma&= p \alpha + \frac{n}{\textrm{gcd}(n,n')}\lambda ~,\\ \gamma '&= p' \alpha - \frac{n'}{\textrm{gcd}(n,n')}\lambda ~, \end{aligned}\end{aligned}$$
(A.11)

for \(\alpha \in \left\{ \sum _{i,j} \alpha _i {\textbf{A}}_i + \beta _j {\textbf{B}}_j \in H_1(\Sigma ,{\mathbb {Z}}) \mid \alpha _i,\beta _j \in \{ 1, \dots , \textrm{lcm}(n,n') \} \right\} \) and \(\lambda \in H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n')})\), where the integers p and \(p'\) satisfy \(p n' + p'n = \textrm{gcd}(n,n')\). Here \({\textbf{A}}_{i},{\textbf{B}}_{j}\) are a fixed set of generators for \(H_1(\Sigma ,{\mathbb {Z}})\).

In terms of these new variables we get:

$$\begin{aligned} \begin{aligned}&{\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b(\bar{\gamma }, \Sigma ) \times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'} (\bar{\gamma }, \Sigma ) \\&\quad = \sum _{\begin{array}{c} \alpha \in H_1(\Sigma ,{\mathbb {Z}}_{\textrm{lcm}(n,n')}) \\ \lambda \in H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n')}) \end{array}} {e^{ {2\pi i \over \textrm{gcd}(n,n')} \langle (c-c')\bar{\gamma } - k\ell \alpha , \lambda \rangle + {2\pi i}\langle \bar{\gamma }, ( \frac{pc}{n} + \frac{p'c'}{n'} ) \alpha \rangle } \over \sqrt{|H_1(\Sigma ,{\mathbb {Z}}_n)||H_1(\Sigma ,{\mathbb {Z}}_{n'})|}} \; \eta \big ( \ell \alpha + (b+b')\bar{\gamma } \big ) \,, \end{aligned}\end{aligned}$$
(A.12)

where \(c=a-kb'\), \(c'=a'+kb\), and \(\ell = {N \over \textrm{lcm}(n,n')}\). The sum over \(\lambda \) gives a Kronecker delta, multiplied by \(|H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n')})|\), that enforces \(\alpha \) to satisfy

$$\begin{aligned} \begin{aligned} (c-c')\bar{\gamma } - k\ell \alpha = 0 \in H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n')}) \,. \end{aligned}\end{aligned}$$
(A.13)

Thus, we can rewrite the fusion as

$$\begin{aligned} \begin{aligned}&\frac{1}{|H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n')})|} \; {\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b (\bar{\gamma }, \Sigma )\times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'} (\bar{\gamma }, \Sigma ) \\&\quad = \sum _{\begin{array}{c} \alpha \in H_1(\Sigma ,{\mathbb {Z}}_{\textrm{lcm}(n,n')}) \\ (c-c')\bar{\gamma } - k\ell \alpha = 0 \text { mod }\textrm{gcd}(n,n') \end{array}} {e^{ {2\pi i}\langle \bar{\gamma }, ( \frac{pc}{n} + \frac{p'c'}{n'} ) \alpha \rangle } \over \sqrt{|H_1(\Sigma ,{\mathbb {Z}}_n)||H_1(\Sigma ,{\mathbb {Z}}_{n'})|}} \; \eta \big ( \ell \alpha + (b+b')\bar{\gamma } \big ) \,. \end{aligned}\end{aligned}$$
(A.14)

If there is no solution to the constraint (A.13) we get zero on the righthand side. Otherwise, any solution can be written as

$$\begin{aligned} \alpha = {c-c' \over \textrm{gcd}(n,n',k\ell ) } \left( {k\ell \over \textrm{gcd}(n,n',k\ell )} \right) ^{-1}_{N \over x\ell } \bar{\gamma } + {\textrm{gcd}(n,n') \over \textrm{gcd}(n,n',k\ell ) } \bar{\alpha } \,, \qquad \bar{\alpha } \in H_1(\Sigma ,{\mathbb {Z}}_x)\,, \end{aligned}$$
(A.15)

where

$$\begin{aligned} \begin{aligned} x \equiv \frac{\textrm{gcd}(n,n',k\ell )nn'}{\textrm{gcd}(n,n')^2}\,, \end{aligned}\end{aligned}$$
(A.16)

and \(\big ({k\ell \over \textrm{gcd}(n,n',k\ell )}\big )^{-1}_{N \over x\ell } \in ({\mathbb {Z}}_{N \over x\ell })^\times \) is the multiplicative inverse of \({k\ell \over \textrm{gcd}(n,n',k\ell )}\) modulo \({N \over x\ell } = {\textrm{gcd}(n,n') \over \textrm{gcd}(n,n',k\ell )}\). The multiplicative inverse always exists since \({k\ell \over \textrm{gcd}(n,n',k\ell )}\) is coprime with respect to \({\textrm{gcd}(n,n') \over \textrm{gcd}(n,n',k\ell )}\).

We substitute (A.15) into (A.14) to get

$$\begin{aligned} \begin{aligned}&\frac{1}{|H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n')})|} \; {\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b(\bar{\gamma }, \Sigma ) \times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'} (\bar{\gamma }, \Sigma ) \\&\quad = \sum _{ \begin{array}{c} {\bar{\alpha }} \in H_1(\Sigma ,{\mathbb {Z}}_x) \\ {(c-c') \bar{\gamma } \over \textrm{gcd}(n,n',k\ell ) } \in H_1(\Sigma ,{\mathbb {Z}}) \end{array} } \frac{e^{ {2\pi i \over x} \frac{pcn'+p'c'n}{\textrm{gcd}(n,n')} \langle \bar{\gamma }, \bar{\alpha } \rangle }}{\sqrt{|H_1(\Sigma ,{\mathbb {Z}}_n)||H_1(\Sigma ,{\mathbb {Z}}_{n'})|}}\, \, \eta \Bigg ( \begin{array}{c} (b+b')\bar{\gamma } + {N \over x} {\bar{\alpha }} \\ +{\ell (c-c') \over \textrm{gcd}(n,n',k\ell ) } \big ({k\ell \over \textrm{gcd}(n,n',k\ell )} \big )^{-1}_{N \over x\ell } \bar{\gamma } \end{array} \Bigg ) \,. \end{aligned}\end{aligned}$$
(A.17)

Comparing this with (5.21) we find

$$\begin{aligned}\begin{aligned}&{\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b(\bar{\gamma }, \Sigma ) \times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'} (\bar{\gamma }, \Sigma ) \\&\quad = \delta _{(c-c'){\bar{\gamma }} \,\text { mod gcd}(n,n',k\ell ) , 0} \, \sqrt{|H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n',k\ell )})|} \\&\qquad {\hat{\eta }}_{x}^{\frac{pcn'+p'c'n}{\textrm{gcd}(n,n')}} {\tilde{\eta }}_{x}^{{\ell (c-c') \over \textrm{gcd}(n,n',k\ell )}(\frac{k\ell }{\textrm{gcd}(n,n',k\ell )})^{-1}_{N \over x\ell }+b+b'}({\bar{\gamma }}, \Sigma ) \,. \end{aligned} \end{aligned}$$

The fusion coefficient \(\delta _{(c-c'){\bar{\gamma }} \,\text { mod gcd}(n,n',k\ell ), 0} \, \sqrt{|H_1(\Sigma ,{\mathbb {Z}}_{\textrm{gcd}(n,n',k\ell )})|}\) is the partition function of the 1+1d \({\mathbb {Z}}_{\textrm{gcd}(n,n',k\ell )}\) gauge theory on \(\Sigma \) with the Wilson line \(W^{c-c'}\) on \({\bar{\gamma }}\) that we denote by \(({\mathcal {Z}}_{\textrm{gcd}(n,n',k\ell )}, W^{c-c'})({\bar{\gamma }},\Sigma )\). This can be seen by

$$\begin{aligned} \begin{aligned} ({\mathcal {Z}}_N, W^{c}) ({\bar{\gamma }},\Sigma ) = {1\over \sqrt{|H_1(\Sigma , {\mathbb {Z}}_N)|}} \sum _{\gamma \in H_1(\Sigma ,{\mathbb {Z}}_N)} e^{\frac{2\pi i}{N} c \langle {\bar{\gamma }},\gamma \rangle } = \delta _{c{\bar{\gamma }} \,\text { mod }N , 0} \, \sqrt{|H_1(\Sigma ,{\mathbb {Z}}_N)|} \,. \end{aligned}\end{aligned}$$
(A.18)

We therefore conclude that

$$\begin{aligned} {\hat{\eta }}_{n}^a {\tilde{\eta }}_{n}^b \times {\hat{\eta }}_{n'}^{a'} {\tilde{\eta }}_{n'}^{b'} = \left( {\mathcal {Z}}_{\textrm{gcd}(n,n',k\ell )}, W^{c-c'} \right) \, {\hat{\eta }}_{x}^{\frac{pcn'+p'c'n}{\textrm{gcd}(n,n')}} {\tilde{\eta }}_{x}^{{\ell (c-c') \over \textrm{gcd}(n,n',k\ell )}\left( \frac{k\ell }{\textrm{gcd}(n,n',k\ell )}\right) ^{-1}_{N \over x\ell }+b+b'} \,. \end{aligned}$$
(A.19)

1.2 A.2 Fusion rules in the \({\mathbb {Z}}_p\) gauge theory

In this appendix we give the detail of the computation for the condensation surfaces in the \({\mathbb {Z}}_p\) gauge theory in Sect. 6.4.

$$\begin{aligned} {\textit{Fusion of condensation defects from higher gauging}}\,{\mathbb {Z}}_p \times {\mathbb {Z}}_p \end{aligned}$$

Let us choose \(f,f' \in {\mathbb {Z}}_p\) and compute the fusion between \(S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f}\) and \(S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f'}\)

$$\begin{aligned} \begin{aligned}&S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f}(\Sigma ) \times S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f'}(\Sigma ) \\&\quad = {1 \over {|H_1(\Sigma , {\mathbb {Z}}_p)|}^2 }\sum _{ \gamma _i, \gamma '_i} {e^{{2\pi i \over p} \left( {f \langle \gamma _1, \gamma _2\rangle + f' \langle \gamma '_1, \gamma '_2\rangle }\right) } } \, \eta _1(\gamma _1) \eta _2(\gamma _2) \, \eta _1(\gamma '_1)\eta _2(\gamma '_2) \\&\quad = {1 \over {|H_1(\Sigma , {\mathbb {Z}}_p)|}^2} \sum _{ \gamma _i, \gamma '_i} {e^{{2\pi i \over p} \left( {f \langle \gamma _1, \gamma _2\rangle + (f+f'+1) \langle \gamma '_1, \gamma '_2\rangle + (f+1) \langle \gamma _2, \gamma '_1 \rangle + f \langle \gamma '_2, \gamma _1 \rangle }\right) } } \, \eta _1(\gamma _1) \, \eta _2(\gamma _2) \,. \end{aligned}\end{aligned}$$
(A.20)

To simplifying the RHS, there are qualitatively two different cases depending on whether \(f+f'+1 = 0 \pmod {p}\) or not:

Case 1 (\(f+f'+1\ne 0\)): The sum over \(\gamma '_2\) results in the Kronecker delta function factor \({|H_1(\Sigma , {\mathbb {Z}}_p)|} \, \delta _{f\gamma _1 - [f+f'+1]\gamma '_1, 0} \) which sets \(\gamma '_1 = \frac{f}{f+f'+1}\gamma _1\) and we get

$$\begin{aligned} \begin{aligned} S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f}(\Sigma ) \times S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f'}(\Sigma ) = \frac{1}{{|H_1(\Sigma , {\mathbb {Z}}_p)|}} \sum _{ \gamma _1, \gamma _2 } e^{\frac{2\pi i}{p} \frac{ff' }{f+f'+1} \langle \gamma _1, \gamma _2\rangle } \, \eta _1(\gamma _1) \, \eta _2(\gamma _2) \,. \end{aligned}\end{aligned}$$
(A.21)

This translates to the invertible fusion rule \( S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f} \times S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f'} = S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{ff'}{f+f'+1}}\). If we do the crucial change of variable \(f=\frac{1}{m-1}\), the fusion rule simplifies to

$$\begin{aligned} S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{m-1}} \times S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{m'-1}} = S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{mm'-1}} ~. \end{aligned}$$
(A.22)

Case 2 (\(f+f'+1=0\)): In this case we can perform the sum over \(\gamma '_1\) and \(\gamma '_2\) to get

$$\begin{aligned} \begin{aligned} S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f}(\Sigma ) \times S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f'}(\Sigma )&= \sum _{ \gamma _1, \gamma _2 } \delta _{(f+1)\gamma _2,0} \, \delta _{f\gamma _1,0} \, e^{{2\pi i \over p} {f \langle \gamma _1, \gamma _2\rangle } } \, \eta _1(\gamma _1) \, \eta _2(\gamma _2) \\&= {\left\{ \begin{array}{ll} \sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|} \, S_{{\mathbb {Z}}_{p}^{(\infty )}}(\Sigma )\,, &{} f=0 \\ \sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|} \, S_{{\mathbb {Z}}_{p}^{(0)}}(\Sigma )\,, &{} f'=0 \\ 1\,, &{} f,f' \ne 0 \end{array}\right. } \end{aligned}\end{aligned}$$
(A.23)

For reasons that become clear later, we have introduced a notation where \(S_{{\mathbb {Z}}_{p}^{(\infty )}}\) and \(S_{{\mathbb {Z}}_{p}^{(0)}}\) correspond to the higher gauging of the first and second \({\mathbb {Z}}_p\) subgroups (generated by \(\eta _1\) and \(\eta _2\)), respectively.

Putting everything together the fusion rules can be summarized as:

$$\begin{aligned} S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{m-1}} \times S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{m'-1}} = {\left\{ \begin{array}{ll} \left( {\mathcal {Z}}_p \right) S_{{\mathbb {Z}}_{p}^{(m)}} &{} m=\frac{1}{m'} =0 \text { or }\infty \\ S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{mm'-1}} &{} \text {otherwise} \end{array}\right. } ~, \end{aligned}$$
(A.24)

where we have introduced another notation of \(S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \infty } \equiv 1\). Therefore, we see that the surfaces \( S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, f} \) with \(f\ne 0,-1\) form a cyclic group \({\mathbb {Z}}_{p-1}\) under fusion. In contrast, the surface defects \( S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, 0} \) and \( S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, -1} \) are non-invertible.

$$\begin{aligned} {\textit{Fusion of condensation defects from higher gauging}}\,{\mathbb {Z}}_p \end{aligned}$$

The \({\mathbb {Z}}_p \times {\mathbb {Z}}_p\) 1-form symmetry has \(p+1\) \({\mathbb {Z}}_p\) subgroups. Given any non-zero element \((m_1,m_2) \in {\mathbb {Z}}_p \times {\mathbb {Z}}_p\) associated with the topological line \(\eta _1^{m_1} \eta _2^{m_2}\), we can take the \({\mathbb {Z}}_p\) subgroup generated by it and denote it by \({\mathbb {Z}}_p^{(m_1/m_2)}\). Note that \({\mathbb {Z}}_{p}^{(m)}\) only depend on \(m=\frac{m_1}{m_2} \pmod {p}\), where \(m=\infty \) and \(m=0\) corresponds to the first and second \({\mathbb {Z}}_p\) subgroups which are 0-gaugeable. Therefore, from the results of Sect. 5.1, \(S_{{\mathbb {Z}}_{p}^{(\infty )}}\) and \(S_{{\mathbb {Z}}_{p}^{(0)}}\) are non-invertible and the rest are all invertible order 2 defects.

Denote the surface defect from the higher gauging of \({\mathbb {Z}}_{p}^{(m)}\) by

$$\begin{aligned} S_{{\mathbb {Z}}_{p}^{(m)}}(\Sigma ) = \frac{1}{\sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|}} \sum _{ \gamma \in H_1(\Sigma ,{\mathbb {Z}}_p) } \eta _1(m_1 \gamma ) \, \eta _2( m_2 \gamma ) \,. \end{aligned}$$
(A.25)

The fusion of this surface with itself has been computed in Sect. 5. Thus let us take \(m \ne m'\) and compute the fusion of \(S_{{\mathbb {Z}}_{p}^{(m)}}\) with \(S_{{\mathbb {Z}}_{p}^{(m')}}\):

$$\begin{aligned} S_{{\mathbb {Z}}_{p}^{(m)}}(\Sigma )\times S_{{\mathbb {Z}}_{p}^{(m')}}(\Sigma )&= \sum _{ \gamma , \gamma ' } {e^{\frac{2\pi i}{p} m_2m'_1 \langle \gamma , \gamma '\rangle } \over {|H_1(\Sigma , {\mathbb {Z}}_p)|}} \, \eta _1(m_1 \gamma + m'_1\gamma ') \eta _2( m_2 \gamma + m'_2 \gamma ') \nonumber \\&= \sum _{ \gamma , \gamma ' } {e^{\frac{2\pi i}{p} \frac{m'}{m-m'} \langle m_1 \gamma + m'_1\gamma ', m_2 \gamma + m'_2 \gamma ' \rangle } \over {|H_1(\Sigma , {\mathbb {Z}}_p)|}} \nonumber \\&\quad \eta _1(m_1 \gamma + m'_1\gamma ') \eta _2( m_2 \gamma + m'_2 \gamma ') \nonumber \\&= S_{{\mathbb {Z}}_p \times {\mathbb {Z}}_p, \frac{1}{\frac{m}{m'}-1}} (\Sigma ) ~ . \end{aligned}$$
(A.26)
$$\begin{aligned} {\textit{Fusion between condensation defects from higher gauging}}\, {\mathbb {Z}}_p\,{\textit{ and }}\,{\mathbb {Z}}_p\times {\mathbb {Z}}_p \end{aligned}$$

Take \(m=m_1/m_2\) and \(f= 1/(m'-1)\), we have

$$\begin{aligned} \begin{aligned}&S_{{\mathbb {Z}}_{p}^{(m)}}(\Sigma )\times S_{{\mathbb {Z}}_{p} \times {\mathbb {Z}}_{p} , \frac{1}{m'-1}}(\Sigma ) \\ {}&= \frac{1}{\sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|}^3} \sum _{ \gamma , \gamma '_i } e^{\frac{2\pi i}{p} f \langle \gamma '_1, \gamma '_2 \rangle } \, \eta _1(m_1 \gamma ) \eta _2( m_2 \gamma ) \eta _1(\gamma _1') \eta _2( \gamma '_2) \\&= \frac{1}{\sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|}} \sum _{ \gamma '_1, \gamma '_2 } e^{\frac{2\pi i}{p} f \langle \gamma '_1, \gamma '_2 \rangle } \, \delta _{m_2(f+1) \gamma '_1, m_1f \gamma '_2} \; \eta _1(\gamma '_1) \eta _2(\gamma '_2) \\&= {\left\{ \begin{array}{ll} \left( {\mathcal {Z}}_p \right) S_{{\mathbb {Z}}_{p} \times {\mathbb {Z}}_{p} , \frac{1}{m'-1}}(\Sigma )\,, &{} m=m' \in \{0, \infty \} \\ S_{{\mathbb {Z}}_p^{(m/m')}}(\Sigma )\,, &{} \text {otherwise} \end{array}\right. } \,. \end{aligned}\end{aligned}$$
(A.27)

and

$$\begin{aligned} \begin{aligned}&S_{{\mathbb {Z}}_{p} \times {\mathbb {Z}}_{p} , \frac{1}{m'-1}}(\Sigma ) \times S_{{\mathbb {Z}}_{p}^{(m)}}(\Sigma ) \\ {}&= \frac{1}{\sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|}^3} \sum _{ \gamma , \gamma '_i } e^{\frac{2\pi i}{p} f \langle \gamma '_1, \gamma '_2 \rangle } \, \eta _1(\gamma _1') \eta _2( \gamma '_2) \eta _1(m_1 \gamma ) \eta _2( m_2 \gamma ) \\&= \frac{1}{\sqrt{|H_1(\Sigma , {\mathbb {Z}}_p)|}} \sum _{ \gamma '_1, \gamma '_2 } e^{\frac{2\pi i}{p} f \langle \gamma '_1, \gamma '_2 \rangle } \, \delta _{m_2f \gamma '_1, m_1(f+1) \gamma '_2} \; \eta _1(\gamma '_1) \eta _2(\gamma '_2) \\&= {\left\{ \begin{array}{ll} \left( {\mathcal {Z}}_p \right) S_{{\mathbb {Z}}_{p} \times {\mathbb {Z}}_{p} , \frac{1}{m'-1}}(\Sigma ) &{} m=1/m' \in \{0, \infty \} \\ S_{{\mathbb {Z}}_p^{(m'm)}}(\Sigma ) &{} \text {otherwise} \end{array}\right. } \,. \end{aligned} \end{aligned}$$
(A.28)

Putting everything together, we have derived the fusion rule (6.70) of the surfaces, which includes the invertible \(D_{2(p-1)}\) 0-form symmetry, of the 2+1d \({\mathbb {Z}}_p\) gauge theory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumpedakis, K., Seifnashri, S. & Shao, SH. Higher Gauging and Non-invertible Condensation Defects. Commun. Math. Phys. 401, 3043–3107 (2023). https://doi.org/10.1007/s00220-023-04706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04706-9

Navigation