Skip to main content

Sensitivity of the SHiP experiment to light dark matter

A preprint version of the article is available at arXiv.

Abstract

Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.

References

  1. M. Schumann, Direct detection of WIMP dark matter: concepts and status, J. Phys. G 46 (2019) 103003 [arXiv:1903.03026] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P.J. Fox, TASI lectures on WIMPs and supersymmetry, PoS(TASI2018)005 (2019) [INSPIRE].

  3. M. Battaglieri et al., U.S. cosmic visions: new ideas in dark matter 2017. Community report, in U.S. cosmic visions: new ideas in dark matter, (2017) [arXiv:1707.04591] [INSPIRE].

  4. M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal effect in dark matter direct detection experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].

    Article  ADS  Google Scholar 

  5. DarkSide collaboration, Low-mass dark matter search with the DarkSide-50 experiment, Phys. Rev. Lett. 121 (2018) 081307 [arXiv:1802.06994] [INSPIRE].

  6. G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    Article  ADS  Google Scholar 

  8. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  9. DARWIN collaboration, DARWIN: direct dark matter search with the ultimate detector, J. Phys. Conf. Ser. 1468 (2020) 012068 [INSPIRE].

  10. PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

  11. SENSEI collaboration, SENSEI: first direct-detection constraints on sub-GeV dark matter from a surface run, Phys. Rev. Lett. 121 (2018) 061803 [arXiv:1804.00088] [INSPIRE].

  12. L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches — current status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  13. BaBar collaboration, Search for invisible decays of a dark photon produced in e+e collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].

  14. Belle-II collaboration, The Belle II physics book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  15. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

    Article  ADS  Google Scholar 

  16. P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

  17. P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].

  18. MiniBooNE collaboration, Low mass WIMP searches with a neutrino experiment: a proposal for further MiniBooNE running, arXiv:1211.2258 [INSPIRE].

  19. B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic dark matter at neutrino factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].

  20. D.E. Soper, M. Spannowsky, C.J. Wallace and T.M.P. Tait, Scattering of dark particles with light mediators, Phys. Rev. D 90 (2014) 115005 [arXiv:1407.2623] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B.A. Dobrescu and C. Frugiuele, GeV-scale dark matter: production at the main injector, JHEP 02 (2015) 019 [arXiv:1410.1566] [INSPIRE].

    Article  ADS  Google Scholar 

  22. P. Coloma, B.A. Dobrescu, C. Frugiuele and R. Harnik, Dark matter beams at LBNF, JHEP 04 (2016) 047 [arXiv:1512.03852] [INSPIRE].

    ADS  Google Scholar 

  23. C. Frugiuele, Probing sub-GeV dark sectors via high energy proton beams at LBNF/DUNE and MiniBooNE, Phys. Rev. D 96 (2017) 015029 [arXiv:1701.05464] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. deNiverville and C. Frugiuele, Hunting sub-GeV dark matter with the NOνA near detector, Phys. Rev. D 99 (2019) 051701 [arXiv:1807.06501] [INSPIRE].

  25. G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122 (2019) 071801 [arXiv:1806.03310] [INSPIRE].

    Article  ADS  Google Scholar 

  26. MiniBooNE DM collaboration, Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE, Phys. Rev. D 98 (2018) 112004 [arXiv:1807.06137] [INSPIRE].

  27. D. Banerjee et al., Dark matter search in missing energy events with NA64, Phys. Rev. Lett. 123 (2019) 121801 [arXiv:1906.00176] [INSPIRE].

    Article  ADS  Google Scholar 

  28. LDMX collaboration, Light Dark Matter eXperiment (LDMX), arXiv:1808.05219 [INSPIRE].

  29. B. Batell, A. Freitas, A. Ismail and D. Mckeen, Flavor-specific scalar mediators, Phys. Rev. D 98 (2018) 055026 [arXiv:1712.10022] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Lin, H.-B. Yu and K.M. Zurek, On symmetric and asymmetric light dark matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  33. P.F. Depta, M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on the annihilation of MeV-scale dark matter, JCAP 04 (2019) 029 [arXiv:1901.06944] [INSPIRE].

    Article  ADS  Google Scholar 

  34. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the discovery potential for light dark matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].

    Article  ADS  Google Scholar 

  35. SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].

  36. SHiP collaboration, The experimental facility for the Search for Hidden Particles at the CERN SPS, 2019 JINST 14 P03025 [arXiv:1810.06880] [INSPIRE].

  37. SHiP collaboration, Sensitivity of the SHiP experiment to heavy neutral leptons, JHEP 04 (2019) 077 [arXiv:1811.00930] [INSPIRE].

  38. SHiP collaboration, Fairship, https://github.com/ShipSoft/FairShip.

  39. SHiP collaboration, The active muon shield in the SHiP experiment, 2017 JINST 12 P05011 [arXiv:1703.03612] [INSPIRE].

  40. SHiP collaboration, The magnet of the scattering and neutrino detector for the SHiP experiment at CERN, 2020 JINST 15 P01027 [arXiv:1910.02952] [INSPIRE].

  41. R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018 [INSPIRE].

  42. OPERA collaboration, Discovery of τ neutrino appearance in the CNGS neutrino beam with the OPERA experiment, Phys. Rev. Lett. 115 (2015) 121802 [arXiv:1507.01417] [INSPIRE].

  43. OPERA collaboration, Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam, Phys. Rev. Lett. 120 (2018) 211801 [Erratum ibid. 121 (2018) 139901] [arXiv:1804.04912] [INSPIRE].

  44. OPERA collaboration, Final results of the search for νμ νe oscillations with the OPERA detector in the CNGS beam, JHEP 06 (2018) 151 [arXiv:1803.11400] [INSPIRE].

  45. LHCb collaboration, SciFi — a large scintillating fibre tracker for LHCb, Nucl. Instrum. Meth. A 845 (2017) 481 [INSPIRE].

  46. GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  47. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  48. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  49. C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Celentano, L. Darmé, L. Marsicano and E. Nardi, New production channels for light dark matter in hadronic showers, Phys. Rev. D 102 (2020) 075026 [arXiv:2006.09419] [INSPIRE].

    Article  ADS  Google Scholar 

  52. L. Buonocore, C. Frugiuele, F. Maltoni, O. Mattelaer and F. Tramontano, Event generation for beam dump experiments, JHEP 05 (2019) 028 [arXiv:1812.06771] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Y. Kahn, G. Krnjaic, J. Thaler and M. Toups, DAEδALUS and dark matter detection, Phys. Rev. D 91 (2015) 055006 [arXiv:1411.1055] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Gardner, R.J. Holt and A.S. Tadepalli, New prospects in fixed target searches for dark forces with the SeaQuest experiment at Fermilab, Phys. Rev. D 93 (2016) 115015 [arXiv:1509.00050] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Bonesini, A. Marchionni, F. Pietropaolo and T. Tabarelli de Fatis, On particle production for high-energy neutrino beams, Eur. Phys. J. C 20 (2001) 13 [hep-ph/0101163] [INSPIRE].

  56. B. Döbrich, J. Jaeckel and T. Spadaro, Light in the beam dump — ALP production from decay photons in proton beam-dumps, JHEP 05 (2019) 213 [Erratum ibid. 10 (2020) 046] [arXiv:1904.02091] [INSPIRE].

  57. SHiP collaboration, Heavy flavour cascade production in a beam dump, CERN-SHiP-NOTE-2015-009, (2015).

  58. SHiP collaboration, Measurement of the muon flux for the SHiP experiment, arXiv:2001.04784 [INSPIRE].

  59. L. Buonocore, C. Frugiuele and P. deNiverville, Hunt for sub-GeV dark matter at neutrino facilities: a survey of past and present experiments, Phys. Rev. D 102 (2020) 035006 [arXiv:1912.09346] [INSPIRE].

  60. E. Fermi, On the theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924) 315 [INSPIRE].

    Article  ADS  Google Scholar 

  61. E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].

    Article  ADS  Google Scholar 

  62. C.F. von Weizsäcker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].

    Article  ADS  Google Scholar 

  63. P. deNiverville, C.-Y. Chen, M. Pospelov and A. Ritz, Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP, Phys. Rev. D 95 (2017) 035006 [arXiv:1609.01770] [INSPIRE].

  64. A. Faessler, M.I. Krivoruchenko and B.V. Martemyanov, Once more on electromagnetic form factors of nucleons in extended vector meson dominance model, Phys. Rev. C 82 (2010) 038201 [arXiv:0910.5589] [INSPIRE].

    Article  ADS  Google Scholar 

  65. D.E. Morrissey and A.P. Spray, New limits on light hidden sectors from fixed-target experiments, JHEP 06 (2014) 083 [arXiv:1402.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  66. D. Gorbunov, A. Makarov and I. Timiryasov, Decaying light particles in the SHiP experiment: signal rate estimates for hidden photons, Phys. Rev. D 91 (2015) 035027 [arXiv:1411.4007] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Berlin, S. Gori, P. Schuster and N. Toro, Dark sectors at the Fermilab SeaQuest experiment, Phys. Rev. D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  69. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  70. NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

  71. S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

    Article  ADS  Google Scholar 

  72. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  73. A. Alexandrov et al., Improving the detection efficiency in nuclear emulsion trackers, Nucl. Instrum. Meth. A 776 (2015) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  74. OPERA collaboration, New results on νμ ντ appearance with the OPERA experiment in the CNGS beam, JHEP 11 (2013) 036 [Erratum ibid. 04 (2014) 014] [arXiv:1308.2553] [INSPIRE].

  75. NOMAD collaboration, A precise measurement of the muon neutrino-nucleon inclusive charged current cross-section off an isoscalar target in the energy range 2.5 < Eν < 40 GeV by NOMAD, Phys. Lett. B 660 (2008) 19 [arXiv:0711.1183] [INSPIRE].

  76. MiniBooNE collaboration, Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil at Eν 1 GeV, Phys. Rev. D 83 (2011) 052007 [arXiv:1011.3572] [INSPIRE].

  77. NOMAD collaboration, A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment, Eur. Phys. J. C 63 (2009) 355 [arXiv:0812.4543] [INSPIRE].

  78. J.A. Formaggio and G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales, Rev. Mod. Phys. 84 (2012) 1307 [arXiv:1305.7513] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Duerr, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg and P. Tunney, Invisible and displaced dark matter signatures at Belle II, JHEP 02 (2020) 039 [arXiv:1911.03176] [INSPIRE].

    Article  ADS  Google Scholar 

  80. R. Alemany et al., Summary report of physics beyond colliders at CERN, arXiv:1902.00260 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Ferrillo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.11057

Gwangju National University of Education, Jeju National University and Sungkyunkwan University are associated to Gyeongsang National University, Jinju, Korea.

St. Petersburg Polytechnic University (SPbPU) is associated to Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia.

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The SHiP collaboration., Ahdida, C., Akmete, A. et al. Sensitivity of the SHiP experiment to light dark matter. J. High Energ. Phys. 2021, 199 (2021). https://doi.org/10.1007/JHEP04(2021)199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2021)199

Keywords

  • Beyond Standard Model
  • Dark matter
  • Fixed target experiments