Abstract
Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.

Article PDF
References
M. Schumann, Direct detection of WIMP dark matter: concepts and status, J. Phys. G 46 (2019) 103003 [arXiv:1903.03026] [INSPIRE].
P.J. Fox, TASI lectures on WIMPs and supersymmetry, PoS(TASI2018)005 (2019) [INSPIRE].
M. Battaglieri et al., U.S. cosmic visions: new ideas in dark matter 2017. Community report, in U.S. cosmic visions: new ideas in dark matter, (2017) [arXiv:1707.04591] [INSPIRE].
M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal effect in dark matter direct detection experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].
DarkSide collaboration, Low-mass dark matter search with the DarkSide-50 experiment, Phys. Rev. Lett. 121 (2018) 081307 [arXiv:1802.06994] [INSPIRE].
G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].
R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].
XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
DARWIN collaboration, DARWIN: direct dark matter search with the ultimate detector, J. Phys. Conf. Ser. 1468 (2020) 012068 [INSPIRE].
PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
SENSEI collaboration, SENSEI: first direct-detection constraints on sub-GeV dark matter from a surface run, Phys. Rev. Lett. 121 (2018) 061803 [arXiv:1804.00088] [INSPIRE].
L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches — current status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].
BaBar collaboration, Search for invisible decays of a dark photon produced in e+e− collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
Belle-II collaboration, The Belle II physics book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].
P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].
MiniBooNE collaboration, Low mass WIMP searches with a neutrino experiment: a proposal for further MiniBooNE running, arXiv:1211.2258 [INSPIRE].
B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic dark matter at neutrino factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].
D.E. Soper, M. Spannowsky, C.J. Wallace and T.M.P. Tait, Scattering of dark particles with light mediators, Phys. Rev. D 90 (2014) 115005 [arXiv:1407.2623] [INSPIRE].
B.A. Dobrescu and C. Frugiuele, GeV-scale dark matter: production at the main injector, JHEP 02 (2015) 019 [arXiv:1410.1566] [INSPIRE].
P. Coloma, B.A. Dobrescu, C. Frugiuele and R. Harnik, Dark matter beams at LBNF, JHEP 04 (2016) 047 [arXiv:1512.03852] [INSPIRE].
C. Frugiuele, Probing sub-GeV dark sectors via high energy proton beams at LBNF/DUNE and MiniBooNE, Phys. Rev. D 96 (2017) 015029 [arXiv:1701.05464] [INSPIRE].
P. deNiverville and C. Frugiuele, Hunting sub-GeV dark matter with the NOνA near detector, Phys. Rev. D 99 (2019) 051701 [arXiv:1807.06501] [INSPIRE].
G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122 (2019) 071801 [arXiv:1806.03310] [INSPIRE].
MiniBooNE DM collaboration, Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE, Phys. Rev. D 98 (2018) 112004 [arXiv:1807.06137] [INSPIRE].
D. Banerjee et al., Dark matter search in missing energy events with NA64, Phys. Rev. Lett. 123 (2019) 121801 [arXiv:1906.00176] [INSPIRE].
LDMX collaboration, Light Dark Matter eXperiment (LDMX), arXiv:1808.05219 [INSPIRE].
B. Batell, A. Freitas, A. Ismail and D. Mckeen, Flavor-specific scalar mediators, Phys. Rev. D 98 (2018) 055026 [arXiv:1712.10022] [INSPIRE].
B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
T. Lin, H.-B. Yu and K.M. Zurek, On symmetric and asymmetric light dark matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
P.F. Depta, M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on the annihilation of MeV-scale dark matter, JCAP 04 (2019) 029 [arXiv:1901.06944] [INSPIRE].
E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the discovery potential for light dark matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].
SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
SHiP collaboration, The experimental facility for the Search for Hidden Particles at the CERN SPS, 2019 JINST 14 P03025 [arXiv:1810.06880] [INSPIRE].
SHiP collaboration, Sensitivity of the SHiP experiment to heavy neutral leptons, JHEP 04 (2019) 077 [arXiv:1811.00930] [INSPIRE].
SHiP collaboration, Fairship, https://github.com/ShipSoft/FairShip.
SHiP collaboration, The active muon shield in the SHiP experiment, 2017 JINST 12 P05011 [arXiv:1703.03612] [INSPIRE].
SHiP collaboration, The magnet of the scattering and neutrino detector for the SHiP experiment at CERN, 2020 JINST 15 P01027 [arXiv:1910.02952] [INSPIRE].
R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018 [INSPIRE].
OPERA collaboration, Discovery of τ neutrino appearance in the CNGS neutrino beam with the OPERA experiment, Phys. Rev. Lett. 115 (2015) 121802 [arXiv:1507.01417] [INSPIRE].
OPERA collaboration, Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam, Phys. Rev. Lett. 120 (2018) 211801 [Erratum ibid. 121 (2018) 139901] [arXiv:1804.04912] [INSPIRE].
OPERA collaboration, Final results of the search for νμ → νe oscillations with the OPERA detector in the CNGS beam, JHEP 06 (2018) 151 [arXiv:1803.11400] [INSPIRE].
LHCb collaboration, SciFi — a large scintillating fibre tracker for LHCb, Nucl. Instrum. Meth. A 845 (2017) 481 [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].
J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
A. Celentano, L. Darmé, L. Marsicano and E. Nardi, New production channels for light dark matter in hadronic showers, Phys. Rev. D 102 (2020) 075026 [arXiv:2006.09419] [INSPIRE].
L. Buonocore, C. Frugiuele, F. Maltoni, O. Mattelaer and F. Tramontano, Event generation for beam dump experiments, JHEP 05 (2019) 028 [arXiv:1812.06771] [INSPIRE].
Y. Kahn, G. Krnjaic, J. Thaler and M. Toups, DAEδALUS and dark matter detection, Phys. Rev. D 91 (2015) 055006 [arXiv:1411.1055] [INSPIRE].
S. Gardner, R.J. Holt and A.S. Tadepalli, New prospects in fixed target searches for dark forces with the SeaQuest experiment at Fermilab, Phys. Rev. D 93 (2016) 115015 [arXiv:1509.00050] [INSPIRE].
M. Bonesini, A. Marchionni, F. Pietropaolo and T. Tabarelli de Fatis, On particle production for high-energy neutrino beams, Eur. Phys. J. C 20 (2001) 13 [hep-ph/0101163] [INSPIRE].
B. Döbrich, J. Jaeckel and T. Spadaro, Light in the beam dump — ALP production from decay photons in proton beam-dumps, JHEP 05 (2019) 213 [Erratum ibid. 10 (2020) 046] [arXiv:1904.02091] [INSPIRE].
SHiP collaboration, Heavy flavour cascade production in a beam dump, CERN-SHiP-NOTE-2015-009, (2015).
SHiP collaboration, Measurement of the muon flux for the SHiP experiment, arXiv:2001.04784 [INSPIRE].
L. Buonocore, C. Frugiuele and P. deNiverville, Hunt for sub-GeV dark matter at neutrino facilities: a survey of past and present experiments, Phys. Rev. D 102 (2020) 035006 [arXiv:1912.09346] [INSPIRE].
E. Fermi, On the theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924) 315 [INSPIRE].
E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].
C.F. von Weizsäcker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].
P. deNiverville, C.-Y. Chen, M. Pospelov and A. Ritz, Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP, Phys. Rev. D 95 (2017) 035006 [arXiv:1609.01770] [INSPIRE].
A. Faessler, M.I. Krivoruchenko and B.V. Martemyanov, Once more on electromagnetic form factors of nucleons in extended vector meson dominance model, Phys. Rev. C 82 (2010) 038201 [arXiv:0910.5589] [INSPIRE].
D.E. Morrissey and A.P. Spray, New limits on light hidden sectors from fixed-target experiments, JHEP 06 (2014) 083 [arXiv:1402.4817] [INSPIRE].
D. Gorbunov, A. Makarov and I. Timiryasov, Decaying light particles in the SHiP experiment: signal rate estimates for hidden photons, Phys. Rev. D 91 (2015) 035027 [arXiv:1411.4007] [INSPIRE].
A. Berlin, S. Gori, P. Schuster and N. Toro, Dark sectors at the Fermilab SeaQuest experiment, Phys. Rev. D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
A. Alexandrov et al., Improving the detection efficiency in nuclear emulsion trackers, Nucl. Instrum. Meth. A 776 (2015) 45 [INSPIRE].
OPERA collaboration, New results on νμ → ντ appearance with the OPERA experiment in the CNGS beam, JHEP 11 (2013) 036 [Erratum ibid. 04 (2014) 014] [arXiv:1308.2553] [INSPIRE].
NOMAD collaboration, A precise measurement of the muon neutrino-nucleon inclusive charged current cross-section off an isoscalar target in the energy range 2.5 < Eν < 40 GeV by NOMAD, Phys. Lett. B 660 (2008) 19 [arXiv:0711.1183] [INSPIRE].
MiniBooNE collaboration, Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil at Eν ∼ 1 GeV, Phys. Rev. D 83 (2011) 052007 [arXiv:1011.3572] [INSPIRE].
NOMAD collaboration, A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment, Eur. Phys. J. C 63 (2009) 355 [arXiv:0812.4543] [INSPIRE].
J.A. Formaggio and G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales, Rev. Mod. Phys. 84 (2012) 1307 [arXiv:1305.7513] [INSPIRE].
M. Duerr, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg and P. Tunney, Invisible and displaced dark matter signatures at Belle II, JHEP 02 (2020) 039 [arXiv:1911.03176] [INSPIRE].
R. Alemany et al., Summary report of physics beyond colliders at CERN, arXiv:1902.00260 [INSPIRE].