Skip to main content

Enhancing searches for resonances with machine learning and moment decomposition

A preprint version of the article is available at arXiv.

Abstract

A key challenge in searches for resonant new physics is that classifiers trained to enhance potential signals must not induce localized structures. Such structures could result in a false signal when the background is estimated from data using sideband methods. A variety of techniques have been developed to construct classifiers which are independent from the resonant feature (often a mass). Such strategies are sufficient to avoid localized structures, but are not necessary. We develop a new set of tools using a novel moment loss function (Moment Decomposition or MoDe) which relax the assumption of independence without creating structures in the background. By allowing classifiers to be more flexible, we enhance the sensitivity to new physics without compromising the fidelity of the background estimation.

References

  1. J. Button, G.R. Kalbfleisch, G.R. Lynch, B.C. Maglić, A.H. Rosenfeld and M.L. Stevenson, Pion-pion interaction in the reaction barp + p → 2π+ + 2π + 0, Phys. Rev. 126 (1962) 1858 [INSPIRE].

    Article  ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  3. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  4. CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].

  5. ATLAS collaboration, Search for new resonances in mass distributions of jet pairs using 139fb-1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 03 (2020) 145 [arXiv:1910.08447] [INSPIRE].

  6. LHCb collaboration, Searches for low-mass dimuon resonances, JHEP 10 (2020) 156 [arXiv:2007.03923] [INSPIRE].

  7. STAR collaboration, Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, arXiv:2006.05035 [INSPIRE].

  8. ALICE collaboration, J/ψ elliptic and triangular flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 10 (2020) 141 [arXiv:2005.14518] [mSPIRE].

  9. HPS collaboration, Search for a dark photon in electroproduced e+e- pairs with the heavy photon search experiment at JLab, Phys. Rev. D 98 (2018) 091101 [arXiv:1807.11530] [INSPIRE].

  10. M.E. McCracken et al., Search for baryon-number and lepton-number violating decays of Λ hyperons using the CLAS detector at Jefferson Laboratory, Phys. Rev. D 92 (2015) 072002 [arXiv:1507.03859] [INSPIRE].

    Article  ADS  Google Scholar 

  11. BESIII collaboration, Observation of the leptonic decay D+τ+ντ, Phys. Rev. Lett. 123 (2019) 211802 [arXiv:1908.08877] [INSPIRE].

  12. Belle-II collaboration, Search for axion-like particles produced in e+e collisions at Belle II, Phys. Rev. Lett. 125 (2020) 161806 [arXiv:2007.13071] [INSPIRE].

  13. M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-Rodes and D. Whiteson, Modeling smooth backgrounds and generic localized signals with Gaussian processes, arXiv:1709.05681 [INSPIRE].

  14. A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Guest, K. Cranmer and D. Whiteson, Deep learning and its application to LHC physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K. Albertsson et al., Machine learning in high energy physics community white paper, J. Phys. Conf. Ser. 1085 (2018) 022008 [arXiv:1807.02876] [INSPIRE].

    Article  Google Scholar 

  17. A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics, Nature 560 (2018) 41 [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Bourilkov, Machine and deep learning applications in particle physics, Int. J. Mod. Phys. A 34 (2020) 1930019 [arXiv:1912.08245] [INSPIRE].

    Article  ADS  Google Scholar 

  19. ATLAS collaboration, Performance of top-quark and W-boson tagging with ATLAS in run 2 of the LHC, Eur. Phys. J. C 79 (2019) 375 [arXiv:1808.07858] [INSPIRE].

  20. CMS collaboration, Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques, 2020 JINST 15 P06005 [arXiv:2004.08262] [INSPIRE].

  21. ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 09 (2019) 091 [Erratum ibid. 06 (2020) 042] [arXiv:1906.08589] [INSPIRE].

  22. ATLAS collaboration, Search for heavy diboson resonances in semileptonic final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 1165 [arXiv:2004.14636] [INSPIRE].

  23. CMS collaboration, A multi-dimensional search for new heavy resonances decaying to boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV, Eur. Phys. J. C 80 (2020) 237 [arXiv:1906.05977] [INSPIRE].

  24. CMS collaboration, Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons, Phys. Lett. B 798 (2019) 134952 [arXiv:1906.00057] [INSPIRE].

  25. ATLAS collaboration, Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 102 (2020) 112008 [arXiv:2007.05293] [INSPIRE].

  26. CMS collaboration, Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV, JHEP 01 (2019) 051 [arXiv:1808.01365] [INSPIRE].

  27. ATLAS collaboration, Reconstruction and identification of boosted di-τ systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS, JHEP 11 (2020) 163 [arXiv:2007.14811] [INSPIRE].

  28. CMS collaboration, Search for resonances decaying to a pair of Higgs bosons in the \( b\overline{b}q\overline{q}^{\prime}\mathrm{\ell}\nu \) final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 10 (2019) 125 [arXiv:1904.04193] [INSPIRE].

  29. CMS collaboration, Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 781 (2018) 244 [arXiv:1710.04960] [INSPIRE].

  30. ATLAS collaboration, Search for Higgs boson decays into a Z boson and a light hadronically decaying resonance using 13 TeV pp collision data from the ATLAS detector, Phys. Rev. Lett. 125 (2020) 221802 [arXiv:2004.01678] [INSPIRE].

  31. ATLAS collaboration, A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector, Phys. Lett. B 779 (2018) 24 [arXiv:1709.06783] [INSPIRE].

  32. ATLAS collaboration, Dijet resonance search with weak supervision using \( \sqrt{s} \) = 13 TeV pp collisions in the ATLAS detector, Phys. Rev. Lett. 125 (2020) 131801 [arXiv:2005.02983] [INSPIRE].

  33. ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].

  34. CMS collaboration, Search for low mass vector resonances decaying to quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 119 (2017) 111802 [arXiv:1705.10532] [INSPIRE].

  35. CMS collaboration, Search for low-mass resonances decaying into bottom quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 012005 [arXiv:1810.11822] [INSPIRE].

  36. CMS collaboration, Search for low-mass quark-antiquark resonances produced in association with a photon at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 123 (2019) 231803 [arXiv:1905.10331] [INSPIRE].

  37. CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 112007 [arXiv:1909.04114] [INSPIRE].

  38. ATLAS collaboration, Search for boosted resonances decaying to two b-quarks and produced in association with a jet at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2018-052, CERN, Geneva, Switzerland (2018).

  39. CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett. 120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].

  40. G. Louppe, M. Kagan and K. Cranmer, Learning to pivot with adversarial networks, in Advances in neural information processing systems 30, I. Guyon et al. eds., Curran Associates Inc., U.S.A. (2017), pg. 981 [arXiv:1611.01046] [INSPIRE].

  41. J. Dolen, P. Harris, S. Marzani, S. Rappoccio and N. Tran, Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156 [arXiv:1603.00027] [INSPIRE].

    Article  ADS  Google Scholar 

  42. I. Moult, B. Nachman and D. Neill, Convolved substructure: analytically decorrelating jet substructure observables, JHEP 05 (2018) 002 [arXiv:1710.06859] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Stevens and M. Williams, uBoost: a boosting method for producing uniform selection efficiencies from multivariate classifiers, 2013 JINST 8 P12013 [arXiv:1305.7248] [INSPIRE].

  44. C. Shimmin et al., Decorrelated jet substructure tagging using adversarial neural networks, Phys. Rev. D 96 (2017) 074034 [arXiv:1703.03507] [INSPIRE].

    Article  ADS  Google Scholar 

  45. L. Bradshaw, R.K. Mishra, A. Mitridate and B. Ostdiek, Mass agnostic jet taggers, SciPost Phys. 8 (2020) 011 [arXiv:1908.08959] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, Performance of mass-decorrelated jet substructure observables for hadronic two-body decay tagging in ATLAS, Tech. Rep. ATL-PHYS-PUB-2018-014, CERN, Geneva, Switzerland (2018).

  47. G. Kasieczka and D. Shih, Robust jet classifiers through distance correlation, Phys. Rev. Lett. 125 (2020) 122001 [arXiv:2001.05310] [INSPIRE].

    Article  ADS  Google Scholar 

  48. L.-G. Xia, QBDT, a new boosting decision tree method with systematical uncertainties into training for high energy physics, Nucl. Instrum. Meth. A 930 (2019) 15 [arXiv:1810.08387] [INSPIRE].

    Article  ADS  Google Scholar 

  49. C. Englert, P. Galler, P. Harris and M. Spannowsky, Machine learning uncertainties with adversarial neural networks, Eur. Phys. J. C 79 (2019) 4 [arXiv:1807.08763] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Wunsch, S. Jörger, R. Wolf and G. Quast, Reducing the dependence of the neural network function to systematic uncertainties in the input space, Comput. Softw. Big Sci. 4 (2020) 5 [arXiv:1907.11674] [INSPIRE].

    Article  Google Scholar 

  51. A. Rogozhnikov, A. Bukva, V.V. Gligorov, A. Ustyuzhanin and M. Williams, New approaches for boosting to uniformity, 2015 JINST 10 T03002 [arXiv:1410.4140] [INSPIRE].

  52. CMS collaboration, A deep neural network to search for new long-lived particles decaying to jets, Mach. Learn. Sci. Tech. 1 (2020) 035012 [arXiv:1912.12238] [INSPIRE].

  53. J.M. Clavijo, P. Glaysher and J.M. Katzy, Adversarial domain adaptation to reduce sample bias of a high energy physics classifier, arXiv:2005.00568 [INSPIRE].

  54. G. Kasieczka, B. Nachman, M.D. Schwartz and D. Shih, Automating the ABCD method with machine learning, Phys. Rev. D 103 (2021) 035021 [arXiv:2007.14400] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  55. S. Chang, T. Cohen and B. Ostdiek, What is the machine learning?, Phys. Rev. D 97 (2018) 056009 [arXiv:1709.10106] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J.M. Clavijo, P. Glaysher and J.M. Katzy, Adversarial domain adaptation to reduce sample bias of a high energy physics classifier, arXiv:2005.00568 [INSPIRE].

  57. CMS collaboration, A deep neural network to search for new long-lived particles decaying to jets, Mach. Learn. Sci. Tech. 1 (2020) 035012 [arXiv:1912.12238] [INSPIRE].

  58. CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2018) 097 [arXiv:1710.00159] [INSPIRE].

  59. CMS collaboration, Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 280 [arXiv:1811.06562] [INSPIRE].

  60. CMS collaboration, Measurement and interpretation of differential cross sections for Higgs boson production at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 792 (2019) 369 [arXiv:1812.06504] [INSPIRE].

  61. CMS collaboration, Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 12 (2020) 085 [arXiv:2006.13251] [INSPIRE].

  62. LHCb collaboration, Amplitude analysis of the B+D+DK+ decay, Phys. Rev. D 102 (2020) 112003 [arXiv:2009.00026] [INSPIRE].

  63. LHCb collaboration, A model-independent study of resonant structure in B+ → D+DK+ decays, Phys. Rev. Lett. 125 (2020) 242001 [arXiv:2009.00025] [INSPIRE].

  64. LHCb collaboration, Measurement of the CP-violating phase ϕs from \( {B}_s^0 \)J/ψπ+π decays in 13 TeV pp collisions, Phys. Lett. B 797 (2019) 134789 [arXiv:1903.05530] [INSPIRE].

  65. LHCb collaboration, Search for a dimuon resonance in the ϒ mass region, JHEP 09 (2018) 147 [arXiv:1805.09820] [INSPIRE].

  66. LHCb collaboration, Search for hidden-sector bosons in B0K*0μ+μ decays, Phys. Rev. Lett. 115 (2015) 161802 [arXiv:1508.04094] [INSPIRE].

  67. LHCb collaboration, First observation of forward Z\( b\overline{b} \) production in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 776 (2018) 430 [arXiv:1709.03458] [INSPIRE].

  68. LHCb collaboration, Measurement of forward \( t\overline{t} \), W + \( b\overline{b} \) and W + \( c\overline{c} \) production in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 767 (2017) 110 [arXiv:1610.08142] [INSPIRE].

  69. H. Edwards and A.J. Storkey, Censoring representations with an adversary, in 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 24 May 2016, conference track proceedings, Y. Bengio and Y. LeCun eds., (2016) [arXiv:1511.05897].

  70. Y. Ganin et al., Domain-adversarial training of neural networks, J. Mach. Learn. Res. 17 (2016) 1 [arXiv:1505.07818].

    MathSciNet  MATH  ADS  Google Scholar 

  71. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman and A. Galstyan, A survey on bias and fairness in machine learning, arXiv:1908.09635.

  72. A. Chouldechova and A. Roth, The frontiers of fairness in machine learning, arXiv:1810.08810.

  73. L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

    Article  Google Scholar 

  74. G.J. Székely, M.L. Rizzo and N.K. Bakirov, Measuring and testing dependence by correlation of distances, Ann. Statist. 35 (2007) 2769.

    MathSciNet  Article  Google Scholar 

  75. G.J. Székely and M.L. Rizzo, Brownian distance covariance, Ann. Appl. Statist. 3 (2009) 1236.

    MathSciNet  MATH  Google Scholar 

  76. G.J. Székely and M.L. Rizzo, The distance correlationt-test of independence in high dimension, J. Multivar. Anal. 117 (2013) 193.

    Article  Google Scholar 

  77. G.J. Székely and M.L. Rizzo, Partial distance correlation with methods for dissimilarities, Ann. Statist. 42 (2014) 2382.

    MathSciNet  Article  Google Scholar 

  78. A. Paszke et al., Pytorch: an imperative style, high-performance deep learning library, in Advances in neural information processing systems 32, H. Wallach et al. eds., Curran Associates Inc., U.S.A. (2019), pg. 8024.

  79. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  80. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  81. DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  82. A. Mertens, New features in DELPHES 3, J. Phys. Conf. Ser. 608 (2015) 012045 [INSPIRE].

    Article  Google Scholar 

  83. M. Selvaggi, DELPHES 3: a modular framework for fast-simulation of generic collider experiments, J. Phys. Conf. Ser. 523 (2014) 012033 [INSPIRE].

    Article  Google Scholar 

  84. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  86. M. Cacciari and G.P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  87. ATLAS collaboration, Performance of top quark and W boson tagging in run 2 with ATLAS, Tech. Rep. ATLAS-CONF-2017-064, CERN, Geneva, Switzerland (2017).

  88. A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].

    Article  ADS  Google Scholar 

  89. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  90. G.C. Fox and S. Wolfram, Observables for the analysis of event shapes in e+e annihilation and other processes, Phys. Rev. Lett. 41 (1978) 1581 [INSPIRE].

    Article  ADS  Google Scholar 

  91. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [INSPIRE].

    Article  ADS  Google Scholar 

  92. ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].

  93. C. Chen, New approach to identifying boosted hadronically-decaying particle using jet substructure in its center-of-mass frame, Phys. Rev. D 85 (2012) 034007 [arXiv:1112.2567] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].

    Article  ADS  Google Scholar 

  95. ATLAS collaboration, Measurement of kT splitting scales in W → ℓν events at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2432 [arXiv:1302.1415] [INSPIRE].

  96. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant kt clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  97. P. Ramachandran, B. Zoph and Q.V. Le, Searching for activation functions, arXiv:1710.05941.

  98. D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, U.S.A., 79 May 2015, conference track proceedings, Y. Bengio and Y. LeCun eds., (2015) [arXiv:1412.6980] [INSPIRE].

  99. L.N. Smith and N. Topin, Super-convergence: very fast training of neural networks using large learning rates, arXiv:1708.07120.

  100. I. Loshchilov and F. Hutter, SGDR: stochastic gradient descent with warm restarts, arXiv:1608.03983.

  101. L.N. Smith and N. Topin, Super-convergence: very fast training of neural networks using large learning rates, arXiv:1708.07120.

  102. C.M. Bishop, Mixture density networks, technical report NCRG/94/004, Birmingham U.K. (1994).

  103. G. Kasieczka and D. Shih, Datasets for boosted W tagging, Zenodo, January 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouail Kitouni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.09745

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kitouni, O., Nachman, B., Weisser, C. et al. Enhancing searches for resonances with machine learning and moment decomposition. J. High Energ. Phys. 2021, 70 (2021). https://doi.org/10.1007/JHEP04(2021)070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2021)070

Keywords

  • Jets