Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Critical point Higgs inflation in the Palatini formulation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 08 April 2021
  • volume 2021, Article number: 59 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Critical point Higgs inflation in the Palatini formulation
Download PDF
  • Vera-Maria Enckell1,2,
  • Sami Nurmi2,3,
  • Syksy Räsänen2,4 &
  • …
  • Eemeli Tomberg5 
  • 193 Accesses

  • 19 Citations

  • 8 Altmetric

  • 1 Mention

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling λ and the top Yukawa coupling yt, we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling ξ.

The spectral index ns can take any value in the observationally allowed range. The lower limit for the running is αs > −3.5 × 10−3, and αs can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is 2.2×10−17 < r < 2 × 10−5. We find that slow-roll can be violated near the feature, and a possible period of ultra-slow-roll contributes to the widening of the range of CMB predictions. Nevertheless, for the simplest tree-level action, the Palatini formulation remains distinguishable from the metric formulation even when quantum corrections are taken into account, because of the small tensor-to-scalar ratio.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    Article  Google Scholar 

  2. F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Bezrukov and M. Shaposhnikov, Inflation, LHC and the Higgs boson, Comptes Rendus Physique 16 (2015) 994.

    Article  Google Scholar 

  4. J. Rubio, Higgs inflation, Front. Astron. Space Sci. 5 (2019) 50 [arXiv:1807.02376] [INSPIRE].

    Article  Google Scholar 

  5. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  6. J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].

    Article  Google Scholar 

  7. A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [INSPIRE].

    Article  Google Scholar 

  8. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [INSPIRE].

    Article  Google Scholar 

  9. J.L.F. Barbón and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].

    Article  Google Scholar 

  10. C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

    Article  Google Scholar 

  11. L.A. Popa and A. Caramete, Cosmological Constraints on Higgs Boson Mass, Astrophys. J. 723 (2010) 803 [arXiv:1009.1293] [INSPIRE].

    Article  Google Scholar 

  12. A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

    Article  Google Scholar 

  13. F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [INSPIRE].

    Article  Google Scholar 

  14. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    Article  Google Scholar 

  15. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group, and naturalness in cosmology, Eur. Phys. J. C 72 (2012) 2219 [arXiv:0910.1041] [INSPIRE].

    Article  Google Scholar 

  16. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

    Article  MATH  Google Scholar 

  17. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  Google Scholar 

  18. K. Allison, Higgs xi-inflation for the 125–126 GeV Higgs: a two-loop analysis, JHEP 02 (2014) 040 [arXiv:1306.6931] [INSPIRE].

    Article  Google Scholar 

  19. A. Salvio, Higgs Inflation at NNLO after the Boson Discovery, Phys. Lett. B 727 (2013) 234 [arXiv:1308.2244] [INSPIRE].

    Article  Google Scholar 

  20. M. Shaposhnikov, Cosmology: theory, PoS EPS-HEP2013 (2013) 155 [arXiv:1311.4979] [INSPIRE].

  21. J. Weenink and T. Prokopec, Gauge invariant cosmological perturbations for the nonminimally coupled inflaton field, Phys. Rev. D 82 (2010) 123510 [arXiv:1007.2133] [INSPIRE].

    Article  Google Scholar 

  22. X. Calmet and T.-C. Yang, Frame Transformations of Gravitational Theories, Int. J. Mod. Phys. A 28 (2013) 1350042 [arXiv:1211.4217] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. C.F. Steinwachs and A.Y. Kamenshchik, Non-minimal Higgs Inflation and Frame Dependence in Cosmology, AIP Conf. Proc. 1514 (2013) 161 [arXiv:1301.5543] [INSPIRE].

    Article  Google Scholar 

  24. F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078] [INSPIRE].

    Article  Google Scholar 

  25. Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs Inflation is Still Alive after the Results from BICEP2, Phys. Rev. Lett. 112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].

    Article  Google Scholar 

  26. T. Prokopec and J. Weenink, Naturalness in Higgs inflation in a frame independent formalism, arXiv:1403.3219 [INSPIRE].

  27. A.Y. Kamenshchik and C.F. Steinwachs, Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D 91 (2015) 084033 [arXiv:1408.5769] [INSPIRE].

    Article  Google Scholar 

  28. D. Burns, S. Karamitsos and A. Pilaftsis, Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories, Nucl. Phys. B 907 (2016) 785 [arXiv:1603.03730] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Fumagalli and M. Postma, UV (in)sensitivity of Higgs inflation, JHEP 05 (2016) 049 [arXiv:1602.07234] [INSPIRE].

    Article  Google Scholar 

  30. Y. Hamada, H. Kawai, Y. Nakanishi and K.-y. Oda, Meaning of the field dependence of the renormalization scale in Higgs inflation, Phys. Rev. D 95 (2017) 103524 [arXiv:1610.05885] [INSPIRE].

    Article  Google Scholar 

  31. S. Karamitsos and A. Pilaftsis, Frame Covariant Nonminimal Multifield Inflation, Nucl. Phys. B 927 (2018) 219 [arXiv:1706.07011] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Karamitsos and A. Pilaftsis, On the Cosmological Frame Problem, PoS CORFU2017 (2018) 036 [arXiv:1801.07151] [INSPIRE].

  33. D.P. George, S. Mooij and M. Postma, Quantum corrections in Higgs inflation: the real scalar case, JCAP 02 (2014) 024 [arXiv:1310.2157] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  34. M. Postma and M. Volponi, Equivalence of the Einstein and Jordan frames, Phys. Rev. D 90 (2014) 103516 [arXiv:1407.6874] [INSPIRE].

    Article  Google Scholar 

  35. T. Prokopec and J. Weenink, Uniqueness of the gauge invariant action for cosmological perturbations, JCAP 12 (2012) 031 [arXiv:1209.1701] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  36. M. Herrero-Valea, Anomalies, equivalence and renormalization of cosmological frames, Phys. Rev. D 93 (2016) 105038 [arXiv:1602.06962] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  37. S. Pandey, S. Pal and N. Banerjee, Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models, Annals Phys. 393 (2018) 93 [arXiv:1611.07043] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Pandey and N. Banerjee, Equivalence of Jordan and Einstein frames at the quantum level, Eur. Phys. J. Plus 132 (2017) 107 [arXiv:1610.00584] [INSPIRE].

    Article  Google Scholar 

  39. F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].

    Article  Google Scholar 

  40. J. Rubio, Higgs inflation and vacuum stability, J. Phys. Conf. Ser. 631 (2015) 012032 [arXiv:1502.07952] [INSPIRE].

    Article  Google Scholar 

  41. V.-M. Enckell, K. Enqvist and S. Nurmi, Observational signatures of Higgs inflation, JCAP 07 (2016) 047 [arXiv:1603.07572] [INSPIRE].

    Article  Google Scholar 

  42. F. Bezrukov, M. Pauly and J. Rubio, On the robustness of the primordial power spectrum in renormalized Higgs inflation, JCAP 02 (2018) 040 [arXiv:1706.05007] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  43. S. Rasanen and P. Wahlman, Higgs inflation with loop corrections in the Palatini formulation, JCAP 11 (2017) 047 [arXiv:1709.07853] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  44. I. Masina, Ruling out Critical Higgs Inflation?, Phys. Rev. D 98 (2018) 043536 [arXiv:1805.02160] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. A. Salvio, Initial Conditions for Critical Higgs Inflation, Phys. Lett. B 780 (2018) 111 [arXiv:1712.04477] [INSPIRE].

    Article  Google Scholar 

  46. J.M. Ezquiaga, J. García-Bellido and E. Ruiz Morales, Primordial Black Hole production in Critical Higgs Inflation, Phys. Lett. B 776 (2018) 345 [arXiv:1705.04861] [INSPIRE].

    Article  Google Scholar 

  47. S. Rasanen and E. Tomberg, Planck scale black hole dark matter from Higgs inflation, JCAP 01 (2019) 038 [arXiv:1810.12608] [INSPIRE].

    Article  Google Scholar 

  48. V.-M. Enckell, K. Enqvist, S. Rasanen and E. Tomberg, Higgs inflation at the hilltop, JCAP 06 (2018) 005 [arXiv:1802.09299] [INSPIRE].

    Article  Google Scholar 

  49. M. Shaposhnikov, A. Shkerin and S. Zell, Quantum Effects in Palatini Higgs Inflation, JCAP 07 (2020) 064 [arXiv:2002.07105] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  50. J. Fumagalli, M. Postma and M. Van Den Bout, Matching and running sensitivity in non-renormalizable inflationary models, JHEP 09 (2020) 114 [arXiv:2005.05905] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  51. F. Bauer and D.A. Demir, Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B 665 (2008) 222 [arXiv:0803.2664] [INSPIRE].

    Article  Google Scholar 

  52. S. Raatikainen and S. Rasanen, Higgs inflation and teleparallel gravity, JCAP 12 (2019) 021 [arXiv:1910.03488] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. R. Jinno and K. Kaneta, Hill-climbing inflation, Phys. Rev. D 96 (2017) 043518 [arXiv:1703.09020] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  54. R. Jinno, K. Kaneta and K.-y. Oda, Hill-climbing Higgs inflation, Phys. Rev. D 97 (2018) 023523 [arXiv:1705.03696] [INSPIRE].

    Article  Google Scholar 

  55. A. Einstein, Einheitliche Feldtheorie von Gravitation und Elektrizität, Verlag Königl. Preuss. Akad. Wiss. 22 (1925) 414.

    MATH  Google Scholar 

  56. A. Einstein, Riemann-Geometrie unter Aufrechterhaltung des Begriffes des Fernparallelismus, Sitzungsber. Preuss. Akad. Wiss. (1928) 217.

  57. A. Einstein, Neue Möglichkeit für eine einheitliche Theorie von Gravitation und Elektrizität, Sitzungsber. Preuss. Akad. Wiss. (1928) 224.

  58. A. Einstein, Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie, Math. Ann. 102 (1930) 685.

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Krssak, R.J. van den Hoogen, J.G. Pereira, C.G. Böhmer and A.A. Coley, Teleparallel theories of gravity: illuminating a fully invariant approach, Class. Quant. Grav. 36 (2019) 183001 [arXiv:1810.12932] [INSPIRE].

    Article  Google Scholar 

  60. F.W. Hehl, P. Von Der Heyde, G.D. Kerlick and J.M. Nester, General Relativity with Spin and Torsion: Foundations and Prospects, Rev. Mod. Phys. 48 (1976) 393 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  61. F.W. Hehl and G.D. Kerlick, Metric-affine variational principles in general relativity. I — Riemannian space-time, Gen. Rel. Grav. 9 (1978) 691.

  62. A. Papapetrou and J. Stachel, A new Lagrangian for the vacuum Einstein equations and its tetrad form, Gen. Rel. Grav. 9 (1978) 1075.

    Article  MathSciNet  MATH  Google Scholar 

  63. F.W. Hehl, E.A. Lord and L.L. Smalley, Metric-affine variational principles in general relativity II. Relaxation of the Riemannian constraint, Gen. Rel. Grav. 13 (1981) 1037.

  64. R. Percacci, The Higgs phenomenon in quantum gravity, Nucl. Phys. B 353 (1991) 271 [arXiv:0712.3545] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  65. C. Rovelli, Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: A Report, Class. Quant. Grav. 8 (1991) 1613 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  66. J.M. Nester and H.-J. Yo, Symmetric teleparallel general relativity, Chin. J. Phys. 37 (1999) 113 [gr-qc/9809049] [INSPIRE].

  67. R. Percacci, Gravity from a Particle Physicists’ perspective, PoS ISFTG (2009) 011 [arXiv:0910.5167] [INSPIRE].

  68. K. Krasnov and R. Percacci, Gravity and Unification: A review, Class. Quant. Grav. 35 (2018) 143001 [arXiv:1712.03061] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Gielen, R. de León Ardón and R. Percacci, Gravity with more or less gauging, Class. Quant. Grav. 35 (2018) 195009 [arXiv:1805.11626] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Beltrán Jiménez, L. Heisenberg and T. Koivisto, Coincident General Relativity, Phys. Rev. D 98 (2018) 044048 [arXiv:1710.03116] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  71. M. Ferraris, M. Francaviglia and C. Reina, Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925, Gen. Rel. Grav. 14 (1982) 243.

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Beltrán Jiménez and A. Delhom, Ghosts in metric-affine higher order curvature gravity, Eur. Phys. J. C 79 (2019) 656 [arXiv:1901.08988] [INSPIRE].

    Article  Google Scholar 

  73. R. Percacci, Towards Metric-Affine Quantum Gravity, Int. J. Geom. Meth. Mod. Phys. 17 (2020) 2040003 [arXiv:2003.09486] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  74. F. Bauer and D.A. Demir, Higgs-Palatini Inflation and Unitarity, Phys. Lett. B 698 (2011) 425 [arXiv:1012.2900] [INSPIRE].

    Article  Google Scholar 

  75. T. Markkanen, T. Tenkanen, V. Vaskonen and H. Veermäe, Quantum corrections to quartic inflation with a non-minimal coupling: metric vs. Palatini, JCAP 03 (2018) 029 [arXiv:1712.04874] [INSPIRE].

  76. S. Rasanen, Higgs inflation in the Palatini formulation with kinetic terms for the metric, Open J. Astrophys. 2 (2019) 1 [arXiv:1811.09514] [INSPIRE].

    Article  Google Scholar 

  77. A. Racioppi, New universal attractor in nonminimally coupled gravity: Linear inflation, Phys. Rev. D 97 (2018) 123514 [arXiv:1801.08810] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  78. J. Rubio and E.S. Tomberg, Preheating in Palatini Higgs inflation, JCAP 04 (2019) 021 [arXiv:1902.10148] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  79. A. Racioppi, Non-Minimal (Self-)Running Inflation: Metric vs. Palatini Formulation, JHEP 01 (2021) 011 [arXiv:1912.10038] [INSPIRE].

  80. T. Tenkanen, Tracing the high energy theory of gravity: an introduction to Palatini inflation, Gen. Rel. Grav. 52 (2020) 33 [arXiv:2001.10135] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  81. G.K. Karananas, M. Michel and J. Rubio, One residue to rule them all: Electroweak symmetry breaking, inflation and field-space geometry, Phys. Lett. B 811 (2020) 135876 [arXiv:2006.11290] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  82. M. Långvik, J.-M. Ojanperä, S. Raatikainen and S. Rasanen, Higgs inflation with the Holst and the Nieh-Yan term, arXiv:2007.12595 [INSPIRE].

  83. M. Shaposhnikov, A. Shkerin, I. Timiryasov and S. Zell, Einstein-Cartan gravity, matter, and scale-invariant generalization, JHEP 10 (2020) 177 [arXiv:2007.16158] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  84. I.D. Gialamas, A. Karam, A. Lykkas and T.D. Pappas, Palatini-Higgs inflation with nonminimal derivative coupling, Phys. Rev. D 102 (2020) 063522 [arXiv:2008.06371] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  85. C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].

    Article  MATH  Google Scholar 

  86. R.N. Lerner and J. McDonald, Higgs Inflation and Naturalness, JCAP 04 (2010) 015 [arXiv:0912.5463] [INSPIRE].

    Article  Google Scholar 

  87. R.N. Lerner and J. McDonald, A Unitarity-Conserving Higgs Inflation Model, Phys. Rev. D 82 (2010) 103525 [arXiv:1005.2978] [INSPIRE].

    Article  Google Scholar 

  88. M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [INSPIRE].

    Article  MATH  Google Scholar 

  89. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, Late and early time phenomenology of Higgs-dependent cutoff, JCAP 10 (2011) 001 [arXiv:1106.5019] [INSPIRE].

    ADS  Google Scholar 

  90. X. Calmet and R. Casadio, Self-healing of unitarity in Higgs inflation, Phys. Lett. B 734 (2014) 17 [arXiv:1310.7410] [INSPIRE].

    Article  MATH  Google Scholar 

  91. R.N. Lerner and J. McDonald, Unitarity-Violation in Generalized Higgs Inflation Models, JCAP 11 (2012) 019 [arXiv:1112.0954] [INSPIRE].

    Article  Google Scholar 

  92. Z.-Z. Xianyu, J. Ren and H.-J. He, Gravitational Interaction of Higgs Boson and Weak Boson Scattering, Phys. Rev. D 88 (2013) 096013 [arXiv:1305.0251] [INSPIRE].

    Article  Google Scholar 

  93. J. Ren, Z.-Z. Xianyu and H.-J. He, Higgs Gravitational Interaction, Weak Boson Scattering, and Higgs Inflation in Jordan and Einstein Frames, JCAP 06 (2014) 032 [arXiv:1404.4627] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  94. A. Escrivà and C. Germani, Beyond dimensional analysis: Higgs and new Higgs inflations do not violate unitarity, Phys. Rev. D 95 (2017) 123526 [arXiv:1612.06253] [INSPIRE].

    Article  Google Scholar 

  95. J. Fumagalli, S. Mooij and M. Postma, Unitarity and predictiveness in new Higgs inflation, JHEP 03 (2018) 038 [arXiv:1711.08761] [INSPIRE].

    Article  MATH  Google Scholar 

  96. D. Gorbunov and A. Tokareva, Scalaron the healer: removing the strong-coupling in the Higgs- and Higgs-dilaton inflations, Phys. Lett. B 788 (2019) 37 [arXiv:1807.02392] [INSPIRE].

    Article  MATH  Google Scholar 

  97. Y. Ema, Dynamical Emergence of Scalaron in Higgs Inflation, JCAP 09 (2019) 027 [arXiv:1907.00993] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  98. D.P. George, S. Mooij and M. Postma, Quantum corrections in Higgs inflation: the Standard Model case, JCAP 04 (2016) 006 [arXiv:1508.04660] [INSPIRE].

    Article  Google Scholar 

  99. Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Violent Preheating in Inflation with Nonminimal Coupling, JCAP 02 (2017) 045 [arXiv:1609.05209] [INSPIRE].

    Article  Google Scholar 

  100. M.P. DeCross, D.I. Kaiser, A. Prabhu, C. Prescod-WEinstein and E.I. Sfakianakis, Preheating after multifield inflation with nonminimal couplings, III: Dynamical spacetime results, Phys. Rev. D 97 (2018) 023528 [arXiv:1610.08916] [INSPIRE].

    Article  Google Scholar 

  101. E.I. Sfakianakis and J. van de Vis, Preheating after Higgs Inflation: Self-Resonance and Gauge boson production, Phys. Rev. D 99 (2019) 083519 [arXiv:1810.01304] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  102. Y. Hamada, K. Kawana and A. Scherlis, On Preheating in Higgs Inflation, JCAP 03 (2021) 062 [arXiv:2007.04701] [INSPIRE].

    Article  Google Scholar 

  103. J. McDonald, Does Palatini Higgs Inflation Conserve Unitarity?, arXiv:2007.04111 [INSPIRE].

  104. U. Aydemir, M.M. Anber and J.F. Donoghue, Self-healing of unitarity in effective field theories and the onset of new physics, Phys. Rev. D 86 (2012) 014025 [arXiv:1203.5153] [INSPIRE].

    Article  Google Scholar 

  105. J.L.F. Barbón, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage, JHEP 09 (2015) 027 [arXiv:1501.02231] [INSPIRE].

    Article  Google Scholar 

  106. A. Salvio and A. Mazumdar, Classical and Quantum Initial Conditions for Higgs Inflation, Phys. Lett. B 750 (2015) 194 [arXiv:1506.07520] [INSPIRE].

    Article  Google Scholar 

  107. S. Kaneda and S.V. Ketov, Starobinsky-like two-field inflation, Eur. Phys. J. C 76 (2016) 26 [arXiv:1510.03524] [INSPIRE].

    Article  Google Scholar 

  108. X. Calmet and I. Kuntz, Higgs Starobinsky Inflation, Eur. Phys. J. C 76 (2016) 289 [arXiv:1605.02236] [INSPIRE].

    Article  Google Scholar 

  109. Y.-C. Wang and T. Wang, Primordial perturbations generated by Higgs field and R2 operator, Phys. Rev. D 96 (2017) 123506 [arXiv:1701.06636] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  110. Y. Ema, Higgs Scalaron Mixed Inflation, Phys. Lett. B 770 (2017) 403 [arXiv:1701.07665] [INSPIRE].

    Article  MATH  Google Scholar 

  111. S. Pi, Y.-l. Zhang, Q.-G. Huang and M. Sasaki, Scalaron from R2 -gravity as a heavy field, JCAP 05 (2018) 042 [arXiv:1712.09896] [INSPIRE].

    Article  Google Scholar 

  112. M. He, R. Jinno, K. Kamada, S.C. Park, A.A. Starobinsky and J. Yokoyama, On the violent preheating in the mixed Higgs-R2 inflationary model, Phys. Lett. B 791 (2019) 36 [arXiv:1812.10099] [INSPIRE].

    Article  MATH  Google Scholar 

  113. M. He, A.A. Starobinsky and J. Yokoyama, Inflation in the mixed Higgs-R2 model, JCAP 05 (2018) 064 [arXiv:1804.00409] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  114. D.M. Ghilencea, Two-loop corrections to Starobinsky-Higgs inflation, Phys. Rev. D 98 (2018) 103524 [arXiv:1807.06900] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  115. S.-J. Wang, Electroweak relaxation of cosmological hierarchy, Phys. Rev. D 99 (2019) 023529 [arXiv:1810.06445] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  116. V.-M. Enckell, K. Enqvist, S. Rasanen and L.-P. Wahlman, Higgs-R2 inflation — full slow-roll study at tree-level, JCAP 01 (2020) 041 [arXiv:1812.08754] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  117. I. Antoniadis, A. Karam, A. Lykkas and K. Tamvakis, Palatini inflation in models with an R2 term, JCAP 11 (2018) 028 [arXiv:1810.10418] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  118. A. Gundhi and C.F. Steinwachs, Scalaron-Higgs inflation, Nucl. Phys. B 954 (2020) 114989 [arXiv:1810.10546] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  119. I. Antoniadis, A. Karam, A. Lykkas, T. Pappas and K. Tamvakis, Rescuing Quartic and Natural Inflation in the Palatini Formalism, JCAP 03 (2019) 005 [arXiv:1812.00847] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  120. M. He, R. Jinno, K. Kamada, A.A. Starobinsky and J. Yokoyama, Occurrence of tachyonic preheating in the mixed Higgs-R2 model, JCAP 01 (2021) 066 [arXiv:2007.10369] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  121. F. Bezrukov and C. Shepherd, A heatwave affair: mixed Higgs-R2 preheating on the lattice, JCAP 12 (2020) 028 [arXiv:2007.10978] [INSPIRE].

    Article  Google Scholar 

  122. Y. Ema, K. Mukaida and J. Van De Vis, Renormalization group equations of Higgs-R2 inflation, JHEP 02 (2021) 109 [arXiv:2008.01096] [INSPIRE].

    Article  MATH  Google Scholar 

  123. Y. Ema, K. Mukaida and J. van de Vis, Higgs inflation as nonlinear sigma model and scalaron as its σ-meson, JHEP 11 (2020) 011 [arXiv:2002.11739] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  124. M. He, Perturbative Reheating in the Mixed Higgs-R2 Model, arXiv:2010.11717 [INSPIRE].

  125. V.-M. Enckell, K. Enqvist, S. Rasanen and L.-P. Wahlman, Inflation with R2 term in the Palatini formalism, JCAP 02 (2019) 022 [arXiv:1810.05536] [INSPIRE].

    Article  Google Scholar 

  126. C. Germani and A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett. 105 (2010) 011302 [arXiv:1003.2635] [INSPIRE].

    Article  Google Scholar 

  127. C. Germani and A. Kehagias, Cosmological Perturbations in the New Higgs Inflation, JCAP 05 (2010) 019 [Erratum ibid. 06 (2010) E01] [arXiv:1003.4285] [INSPIRE].

  128. K. Kamada, T. Kobayashi, M. Yamaguchi and J. Yokoyama, Higgs G-inflation, Phys. Rev. D 83 (2011) 083515 [arXiv:1012.4238] [INSPIRE].

    Article  Google Scholar 

  129. K. Kamada, T. Kobayashi, T. Takahashi, M. Yamaguchi and J. Yokoyama, Generalized Higgs inflation, Phys. Rev. D 86 (2012) 023504 [arXiv:1203.4059] [INSPIRE].

    Article  Google Scholar 

  130. K. Kamada, T. Kobayashi, T. Kunimitsu, M. Yamaguchi and J. Yokoyama, Graceful exit from Higgs G inflation, Phys. Rev. D 88 (2013) 123518 [arXiv:1309.7410] [INSPIRE].

    Article  Google Scholar 

  131. C. Germani, Y. Watanabe and N. Wintergerst, Self-unitarization of New Higgs Inflation and compatibility with Planck and BICEP2 data, JCAP 12 (2014) 009 [arXiv:1403.5766] [INSPIRE].

    Article  Google Scholar 

  132. S. Sato and K.-i. Maeda, Hybrid Higgs Inflation: The Use of Disformal Transformation, Phys. Rev. D 97 (2018) 083512 [arXiv:1712.04237] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  133. L.N. Granda, D.F. Jimenez and W. Cardona, Higgs inflation with non-minimal derivative coupling to gravity, Astropart. Phys. 121 (2020) 102459 [arXiv:1911.02901] [INSPIRE].

    Article  Google Scholar 

  134. S. Sato and K.-i. Maeda, Stability of hybrid Higgs inflation, Phys. Rev. D 101 (2020) 103520 [arXiv:2001.00154] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  135. S. Dutta, K. Hagiwara, Q.-S. Yan and K. Yoshida, Constraints on the electroweak chiral Lagrangian from the precision data, Nucl. Phys. B 790 (2008) 111 [arXiv:0705.2277] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  136. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  137. A.H. Hoang, What is the Top Quark Mass?, Ann. Rev. Nucl. Part. Sci. 70 (2020) 225 [arXiv:2004.12915] [INSPIRE].

    Article  Google Scholar 

  138. http://www.inr.ac.ru/~fedor/SM/.

  139. A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision, Phys. Rev. Lett. 115 (2015) 201802 [arXiv:1507.08833] [INSPIRE].

    Article  Google Scholar 

  140. V. Faraoni, A New solution for inflation, Am. J. Phys. 69 (2001) 372 [physics/0006030] [INSPIRE].

  141. W.H. Kinney, Horizon crossing and inflation with large eta, Phys. Rev. D 72 (2005) 023515 [gr-qc/0503017] [INSPIRE].

  142. J. Martin, H. Motohashi and T. Suyama, Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation, Phys. Rev. D 87 (2013) 023514 [arXiv:1211.0083] [INSPIRE].

    Article  Google Scholar 

  143. K. Dimopoulos, Ultra slow-roll inflation demystified, Phys. Lett. B 775 (2017) 262 [arXiv:1707.05644] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  144. C. Pattison, V. Vennin, H. Assadullahi and D. Wands, The attractive behaviour of ultra-slow-roll inflation, JCAP 08 (2018) 048 [arXiv:1806.09553] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  145. J. Chluba et al., Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics: Astro2020 Science White Paper, Bull. Am. Astron. Soc. 51 (2019) 184 [arXiv:1903.04218] [INSPIRE].

  146. J.B. Dent, D.A. Easson and H. Tashiro, Cosmological constraints from CMB distortion, Phys. Rev. D 86 (2012) 023514 [arXiv:1202.6066] [INSPIRE].

    Article  Google Scholar 

  147. G. Cabass, A. Melchiorri and E. Pajer, μ distortions or running: A guaranteed discovery from CMB spectrometry, Phys. Rev. D 93 (2016) 083515 [arXiv:1602.05578] [INSPIRE].

  148. G. Cabass, E. Di Valentino, A. Melchiorri, E. Pajer and J. Silk, Constraints on the running of the running of the scalar tilt from CMB anisotropies and spectral distortions, Phys. Rev. D 94 (2016) 023523 [arXiv:1605.00209] [INSPIRE].

    Article  Google Scholar 

  149. W. Hu, D. Scott and J. Silk, Power spectrum constraints from spectral distortions in the cosmic microwave background, Astrophys. J. Lett. 430 (1994) L5 [astro-ph/9402045] [INSPIRE].

  150. J. Chluba, R. Khatri and R.A. Sunyaev, CMB at 2 × 2 order: The dissipation of primordial acoustic waves and the observable part of the associated energy release, Mon. Not. Roy. Astron. Soc. 425 (2012) 1129 [arXiv:1202.0057] [INSPIRE].

  151. R. Khatri, R.A. Sunyaev and J. Chluba, Mixing of blackbodies: entropy production and dissipation of sound waves in the early Universe, Astron. Astrophys. 543 (2012) A136 [arXiv:1205.2871] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Medical Imaging and Radiation Therapy, Kymenlaakso Central Hospital, Kymenlaakso Social and Health Services (Kymsote), Kotka, Finland

    Vera-Maria Enckell

  2. Helsinki Institute of Physics (HIP), University of Helsinki, P.O. Box 64, FIN-00014, Helsinki, Finland

    Vera-Maria Enckell, Sami Nurmi & Syksy Räsänen

  3. Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland

    Sami Nurmi

  4. Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014, Helsinki, Finland

    Syksy Räsänen

  5. Laboratory of High Energy and Computational Physics, National Institute of Chemical Physics and Biophysics, Rävala pst. 10, 10143, Tallinn, Estonia

    Eemeli Tomberg

Authors
  1. Vera-Maria Enckell
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sami Nurmi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Syksy Räsänen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Eemeli Tomberg
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Syksy Räsänen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.03660

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enckell, VM., Nurmi, S., Räsänen, S. et al. Critical point Higgs inflation in the Palatini formulation. J. High Energ. Phys. 2021, 59 (2021). https://doi.org/10.1007/JHEP04(2021)059

Download citation

  • Received: 29 December 2020

  • Accepted: 03 March 2021

  • Published: 08 April 2021

  • DOI: https://doi.org/10.1007/JHEP04(2021)059

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Renormalization Group
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature