Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Heavy-flavor hadro-production with heavy-quark masses renormalized in the \( \overline{\mathrm{MS}} \), MSR and on-shell schemes

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 April 2021
  • volume 2021, Article number: 43 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Heavy-flavor hadro-production with heavy-quark masses renormalized in the \( \overline{\mathrm{MS}} \), MSR and on-shell schemes
Download PDF
  • M. V. Garzelli1,
  • L. Kemmler1,
  • S. Moch1,2 &
  • …
  • O. Zenaiev3 
  • 166 Accesses

  • 5 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We present predictions for heavy-quark production at the Large Hadron Collider making use of the \( \overline{\mathrm{MS}} \) and MSR renormalization schemes for the heavy-quark mass as alternatives to the widely used on-shell renormalization scheme. We compute single and double differential distributions including QCD corrections at next-to-leading order and investigate the renormalization and factorization scale dependence as well as the perturbative convergence in these mass renormalization schemes. The implementation is based on publicly available programs, MCFM and xFitter, extending their capabilities. Our results are applied to extract the top-quark mass using measurements of the total and differential \( t\overline{t} \) production cross-sections and to investigate constraints on parton distribution functions, especially on the gluon distribution at low x values, from available LHC data on heavy-flavor hadro-production.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].

    Article  Google Scholar 

  2. W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD Corrections to Heavy Quark Production in \( p\overline{p} \) Collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].

    Article  Google Scholar 

  3. P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. 335 (1990) 260] [INSPIRE].

  4. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].

    Article  Google Scholar 

  5. M. Czakon and A. Mitov, Inclusive Heavy Flavor Hadroproduction in NLO QCD: The Exact Analytic Result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [INSPIRE].

    Article  MATH  Google Scholar 

  6. P. Bärnreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t} \) + X, Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].

    Article  Google Scholar 

  7. M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].

    Article  Google Scholar 

  8. M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].

    Article  Google Scholar 

  9. M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(\( {\alpha}_S^4 \)), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].

    Article  Google Scholar 

  10. M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].

    Article  Google Scholar 

  11. S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair production at the LHC: Fully differential QCD predictions at NNLO, JHEP 07 (2019) 100 [arXiv:1906.06535] [INSPIRE].

    Article  Google Scholar 

  12. S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Bottom-quark production at hadron colliders: fully differential predictions in NNLO QCD, JHEP 03 (2021) 029 [arXiv:2010.11906] [INSPIRE].

    Article  Google Scholar 

  13. M. Cacciari and M. Greco, Large pT hadroproduction of heavy quarks, Nucl. Phys. B 421 (1994) 530 [hep-ph/9311260] [INSPIRE].

  14. M. Cacciari, M. Greco and P. Nason, The pT spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].

  15. B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive D*+- production in \( p\overline{p} \) collisions with massive charm quarks, Phys. Rev. D 71 (2005) 014018 [hep-ph/0410289] [INSPIRE].

  16. B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Collinear subtractions in hadroproduction of heavy quarks, Eur. Phys. J. C 41 (2005) 199 [hep-ph/0502194] [INSPIRE].

  17. A. Banfi and E. Laenen, Joint resummation for heavy quark production, Phys. Rev. D 71 (2005) 034003 [hep-ph/0411241] [INSPIRE].

  18. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].

    Article  Google Scholar 

  19. N. Kidonakis, Top-quark double-differential distributions at approximate N3LO, Phys. Rev. D 101 (2020) 074006 [arXiv:1912.10362] [INSPIRE].

    Article  Google Scholar 

  20. S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].

  21. R.D. Ball and R.K. Ellis, Heavy quark production at high-energy, JHEP 05 (2001) 053 [hep-ph/0101199] [INSPIRE].

  22. S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].

    Article  Google Scholar 

  23. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  24. T. Kneesch, B.A. Kniehl, G. Kramer and I. Schienbein, Charmed-meson fragmentation functions with finite-mass corrections, Nucl. Phys. B 799 (2008) 34 [arXiv:0712.0481] [INSPIRE].

    Article  Google Scholar 

  25. G. Corcella, Challenges in heavy-quark fragmentation, in Proceedings, Parton Radiation and Fragmentation from LHC to FCC-ee, CERN, Geneva, Switzerland, 22–23 November 2016, pp. 134–138 (2017).

  26. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].

  27. M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    Article  Google Scholar 

  28. M.V. Garzelli, S. Moch and G. Sigl, Lepton fluxes from atmospheric charm revisited, JHEP 10 (2015) 115 [arXiv:1507.01570] [INSPIRE].

    Article  Google Scholar 

  29. M.V. Garzelli, S. Alekhin, M. Benzke, B. Kniehl, S.-O. Moch and O. Zenaiev, Heavy meson hadroproduction:open issues, PoS RADCOR2019 (2019) 048 [INSPIRE].

  30. J. Mazzitelli, P.F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi, Next-to-next-to-leading order event generation for top-quark pair production, arXiv:2012.14267 [INSPIRE].

  31. K.G. Chetyrkin, Quark mass anomalous dimension to O(\( {\alpha}_s^4 \)), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].

  32. J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].

  33. P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark Mass Relations to Four-Loop Order in Perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].

    Article  Google Scholar 

  34. A.L. Kataev and V.S. Molokoedov, On the flavour dependence of the \( \mathcal{O}\left({\alpha}_s^4\right) \) correction to the relation between running and pole heavy quark masses, Eur. Phys. J. Plus 131 (2016) 271 [arXiv:1511.06898] [INSPIRE].

    Article  Google Scholar 

  35. A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared Renormalization Group Flow for Heavy Quark Masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].

    Article  Google Scholar 

  36. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [INSPIRE].

    Article  Google Scholar 

  37. S. Alioli et al., A new observable to measure the top-quark mass at hadron colliders, Eur. Phys. J. C 73 (2013) 2438 [arXiv:1303.6415] [INSPIRE].

    Article  Google Scholar 

  38. M. Dowling and S.-O. Moch, Differential distributions for top-quark hadro-production with a running mass, Eur. Phys. J. C 74 (2014) 3167 [arXiv:1305.6422] [INSPIRE].

    Article  Google Scholar 

  39. S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [INSPIRE].

  40. J. Fuster, A. Irles, D. Melini, P. Uwer and M. Vos, Extracting the top-quark running mass using \( t\overline{t} \) + 1-jet events produced at the Large Hadron Collider, Eur. Phys. J. C 77 (2017) 794 [arXiv:1704.00540] [INSPIRE].

    Article  Google Scholar 

  41. ATLAS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) + 1-jet events collected with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 11 (2019) 150 [arXiv:1905.02302] [INSPIRE].

  42. S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair hadroproduction at NNLO: differential predictions with the \( \overline{MS} \) mass, JHEP 08 (2020) 027 [arXiv:2005.00557] [INSPIRE].

    Article  Google Scholar 

  43. A.H. Hoang et al., The MSR mass and the \( \mathcal{O} \)(ΛQCD) renormalon sum rule, JHEP 04 (2018) 003 [arXiv:1704.01580] [INSPIRE].

    Article  Google Scholar 

  44. G. Corcella, The top-quark mass: challenges in definition and determination, Front. in Phys. 7 (2019) 54 [arXiv:1903.06574] [INSPIRE].

    Article  Google Scholar 

  45. A.H. Hoang, What is the Top Quark Mass?, Ann. Rev. Nucl. Part. Sci. 70 (2020) 225 [arXiv:2004.12915] [INSPIRE].

    Article  Google Scholar 

  46. CMS collaboration, Measurement of \( \mathrm{t}\overline{\mathrm{t}} \) normalised multi-differential cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions, Eur. Phys. J. C 80 (2020) 658 [arXiv:1904.05237] [INSPIRE].

  47. M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].

    Article  MATH  Google Scholar 

  48. S. Alekhin and S. Moch, Heavy-quark deep-inelastic scattering with a running mass, Phys. Lett. B 699 (2011) 345 [arXiv:1011.5790] [INSPIRE].

    Article  Google Scholar 

  49. S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αs, and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].

    Article  Google Scholar 

  50. A. Gizhko et al., Running of the Charm-Quark Mass from HERA Deep-Inelastic Scattering Data, Phys. Lett. B 775 (2017) 233 [arXiv:1705.08863] [INSPIRE].

    Article  Google Scholar 

  51. PROSA collaboration, Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x, Eur. Phys. J. C 75 (2015) 396 [arXiv:1503.04581] [INSPIRE].

  52. R. Gauld, J. Rojo, L. Rottoli and J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy, JHEP 11 (2015) 009 [arXiv:1506.08025] [INSPIRE].

    Article  Google Scholar 

  53. R. Gauld and J. Rojo, Precision determination of the small-x gluon from charm production at LHCb, Phys. Rev. Lett. 118 (2017) 072001 [arXiv:1610.09373] [INSPIRE].

    Article  Google Scholar 

  54. V. Bertone, R. Gauld and J. Rojo, Neutrino Telescopes as QCD Microscopes, JHEP 01 (2019) 217 [arXiv:1808.02034] [INSPIRE].

    Article  Google Scholar 

  55. PROSA collaboration, Improved constraints on parton distributions using LHCb, ALICE and HERA heavy-flavour measurements and implications for the predictions for prompt atmospheric-neutrino fluxes, JHEP 04 (2020) 118 [arXiv:1911.13164] [INSPIRE].

  56. S. Alekhin, J. Blümlein and S. Moch, NLO PDFs from the ABMP16 fit, Eur. Phys. J. C 78 (2018) 477 [arXiv:1803.07537] [INSPIRE].

    Article  Google Scholar 

  57. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    Article  Google Scholar 

  58. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

    Article  Google Scholar 

  59. T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D 103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].

    Article  Google Scholar 

  60. M. Beneke, A Quark mass definition adequate for threshold problems, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241] [INSPIRE].

  61. A.H. Hoang and T. Teubner, Top quark pair production close to threshold: Top mass, width and momentum distribution, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468] [INSPIRE].

  62. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

  63. I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The Pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50 (1994) 2234 [hep-ph/9402360] [INSPIRE].

  64. M. Beneke and V.M. Braun, Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364] [INSPIRE].

  65. M.C. Smith and S.S. Willenbrock, Top quark pole mass, Phys. Rev. Lett. 79 (1997) 3825 [hep-ph/9612329] [INSPIRE].

  66. CMS collaboration, Running of the top quark mass from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 803 (2020) 135263 [arXiv:1909.09193] [INSPIRE].

  67. N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three Loop Relation of Quark (Modified) Ms and Pole Masses, Z. Phys. C 48 (1990) 673 [INSPIRE].

    Article  Google Scholar 

  68. K.G. Chetyrkin and M. Steinhauser, The Relation between the MS-bar and the on-shell quark mass at order \( {\alpha}_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].

  69. K. Melnikov and T.v. Ritbergen, The Three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].

  70. K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order \( {\alpha}_s^3 \), Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [INSPIRE].

  71. M. Beneke, P. Marquard, P. Nason and M. Steinhauser, On the ultimate uncertainty of the top quark pole mass, Phys. Lett. B 775 (2017) 63 [arXiv:1605.03609] [INSPIRE].

    Article  Google Scholar 

  72. B. Schmidt and M. Steinhauser, CRunDec: a C++ package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 183 (2012) 1845 [arXiv:1201.6149] [INSPIRE].

    Article  Google Scholar 

  73. F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].

    Article  Google Scholar 

  74. LHCb collaboration, Measurement of B meson production cross-sections in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 08 (2013) 117 [arXiv:1306.3663] [INSPIRE].

  75. LHCb collaboration, Measurement of the b-quark production cross-section in 7 and 13 TeV pp collisions, Phys. Rev. Lett. 118 (2017) 052002 [Erratum ibid. 119 (2017) 169901] [arXiv:1612.05140] [INSPIRE].

  76. LHCb collaboration, Measurement of the B± production cross-section in pp collisions at \( \sqrt{s} \) = 7 and 13 TeV, JHEP 12 (2017) 026 [arXiv:1710.04921] [INSPIRE].

  77. J.C. Collins, F. Wilczek and A. Zee, Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current, Phys. Rev. D 18 (1978) 242 [INSPIRE].

    Article  Google Scholar 

  78. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The three-loop splitting functions \( {P}_{qg}^{(2)} \) and \( {P}_{gg}^{\left(2,{N}_F\right)} \), Nucl. Phys. B 922 (2017) 1 [arXiv:1705.01508] [INSPIRE].

    Article  MATH  Google Scholar 

  79. S. Alekhin, J. Blümlein and S. Moch, Heavy-flavor PDF evolution and variable-flavor number scheme uncertainties in deep-inelastic scattering, Phys. Rev. D 102 (2020) 054014 [arXiv:2006.07032] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  80. A.H. Hoang, S. Plätzer and D. Samitz, On the Cutoff Dependence of the Quark Mass Parameter in Angular Ordered Parton Showers, JHEP 10 (2018) 200 [arXiv:1807.06617] [INSPIRE].

    Article  Google Scholar 

  81. S. Ferrario Ravasio, P. Nason and C. Oleari, All-orders behaviour and renormalons in top-mass observables, JHEP 01 (2019) 203 [arXiv:1810.10931] [INSPIRE].

    Article  Google Scholar 

  82. J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

  83. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  Google Scholar 

  84. L. Kemmler, NLO Predictions for Heavy Quark Production in \( \overline{MS} \)-Scheme, Bachelor’s Thesis, Hamburg U., Inst. Theor. Phys. II (2019).

  85. S. Alekhin et al., HERAFitter, Eur. Phys. J. C 75 (2015) 304 [arXiv:1410.4412] [INSPIRE].

    Article  Google Scholar 

  86. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

    Article  Google Scholar 

  87. A. Accardi et al., A Critical Appraisal and Evaluation of Modern PDFs, Eur. Phys. J. C 76 (2016) 471 [arXiv:1603.08906] [INSPIRE].

    Article  Google Scholar 

  88. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  89. H1 and ZEUS collaborations, Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].

  90. D0 collaboration, Determination of the pole and \( \overline{MS} \) masses of the top quark from the \( t\overline{t} \) cross section, Phys. Lett. B 703 (2011) 422 [arXiv:1104.2887] [INSPIRE].

  91. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  Google Scholar 

  92. V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: automation of fast NLO computations for PDF fits, JHEP 08 (2014) 166 [arXiv:1406.7693] [INSPIRE].

    Article  Google Scholar 

  93. T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].

    Article  Google Scholar 

  94. ATLAS collaboration, Determination of the top-quark pole mass using \( t\overline{t} \) + 1-jet events collected with the ATLAS experiment in 7 TeV pp collisions, JHEP 10 (2015) 121 [arXiv:1507.01769] [INSPIRE].

  95. LHCb collaboration, Prompt charm production in pp collisions at sqrt(s)=7 TeV, Nucl. Phys. B 871 (2013) 1 [arXiv:1302.2864] [INSPIRE].

  96. H1 and ZEUS collaborations, Combined Measurement and QCD Analysis of the Inclusive e+- p Scattering Cross Sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].

  97. H1 and ZEUS collaborations, Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ep Scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].

  98. ZEUS collaboration, Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass, JHEP 09 (2014) 127 [arXiv:1405.6915] [INSPIRE].

  99. xFitter Developers’ Team collaboration, A determination of mc(mc) from HERA data using a matched heavy-flavor scheme, JHEP 08 (2016) 050 [arXiv:1605.01946] [INSPIRE].

  100. H1 and ZEUS collaborations, Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA, Eur. Phys. J. C 78 (2018) 473 [arXiv:1804.01019] [INSPIRE].

  101. ALICE collaboration, Measurement of D0, D+, D*+ and \( {\mathrm{D}}_{\mathrm{s}}^{+} \) production in pp collisions at \( \sqrt{s} \) = 5.02 TeV with ALICE, Eur. Phys. J. C 79 (2019) 388 [arXiv:1901.07979] [INSPIRE].

  102. ATLAS collaboration, Measurement of D*±, D± and \( {D}_s^{\pm } \) meson production cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Nucl. Phys. B 907 (2016) 717 [arXiv:1512.02913] [INSPIRE].

  103. LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 5 TeV, JHEP 06 (2017) 147 [arXiv:1610.02230] [INSPIRE].

  104. LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2016) 159 [Erratum ibid. 09 (2016) 013] [Erratum ibid. 05 (2017) 074] [arXiv:1510.01707] [INSPIRE].

  105. ALICE collaboration, Measurement of D-meson production at mid-rapidity in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 77 (2017) 550 [arXiv:1702.00766] [INSPIRE].

  106. ALICE collaboration, D-meson production in proton-proton collisions with ALICE at the LHC, Nucl. Part. Phys. Proc. 294-296 (2018) 32 [arXiv:1802.09256] [INSPIRE].

  107. M. Lisovyi, A. Verbytskyi and O. Zenaiev, Combined analysis of charm-quark fragmentation-fraction measurements, Eur. Phys. J. C 76 (2016) 397 [arXiv:1509.01061] [INSPIRE].

    Article  Google Scholar 

  108. M. Cacciari, M.L. Mangano and P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at \( \sqrt{s} \) = 7 and 13 TeV, Eur. Phys. J. C 75 (2015) 610 [arXiv:1507.06197] [INSPIRE].

    Article  Google Scholar 

  109. P. Jimenez-Delgado and E. Reya, Delineating parton distributions and the strong coupling, Phys. Rev. D 89 (2014) 074049 [arXiv:1403.1852] [INSPIRE].

    Article  Google Scholar 

  110. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  Google Scholar 

  111. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  112. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  Google Scholar 

  113. T. Sjöstrand, The PYTHIA Event Generator: Past, Present and Future, Comput. Phys. Commun. 246 (2020) 106910 [arXiv:1907.09874] [INSPIRE].

    Article  Google Scholar 

  114. A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic and A. Stasto, Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC, JHEP 06 (2015) 110 [arXiv:1502.01076] [INSPIRE].

    Article  Google Scholar 

  115. H. Paukkunen and P. Zurita, PDF reweighting in the Hessian matrix approach, JHEP 12 (2014) 100 [arXiv:1402.6623] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. II. Institute for Theoretical Physics, Hamburg University, Luruper Chaussee 149, D-22761, Hamburg, Germany

    M. V. Garzelli, L. Kemmler & S. Moch

  2. MTA-DE Particle Physics Research Group, PO Box 105, Debrecen, HU-4010, Hungary

    S. Moch

  3. CERN, CH-1211, Geneva 23, Switzerland

    O. Zenaiev

Authors
  1. M. V. Garzelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. L. Kemmler
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. S. Moch
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. O. Zenaiev
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to M. V. Garzelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.07763

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzelli, M.V., Kemmler, L., Moch, S. et al. Heavy-flavor hadro-production with heavy-quark masses renormalized in the \( \overline{\mathrm{MS}} \), MSR and on-shell schemes. J. High Energ. Phys. 2021, 43 (2021). https://doi.org/10.1007/JHEP04(2021)043

Download citation

  • Received: 08 October 2020

  • Revised: 27 January 2021

  • Accepted: 22 February 2021

  • Published: 06 April 2021

  • DOI: https://doi.org/10.1007/JHEP04(2021)043

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature