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1 Introduction

Charm-anticharm and bottom-antibottom pair-production are among the most frequent
inelastic processes occurring in hadronic collisions at the Large Hadron Collider (LHC),
with cross-sections smaller than for the dijet case but well above those for the top-antitop
case, as follows from the hierarchy of the heavy-quark masses, the available phase-space,
and the structure of the Standard Model (SM) Lagrangian.

Heavy quarks are not observable as free asymptotic states. Charm- and bottom-quarks
hadronize, due to confinement, whereas the top-quark decays before hadronizing, due to
its large decay width. Collider experiments implement procedures for reconstructing top-
quarks from their decay products and are able to detect the products of the hadronization
/ fragmentation of intermediate-mass quarks, i.e. heavy mesons and baryons, as well as the
jets associated to them, i.e. b-jets and c-jets. B-hadrons and D-hadrons are reconstructed
by their decay products, with decay vertices displaced with respect to the primary vertex.
This operation requires good tracking, vertexing and particle identification capabilities.
The measurements are indeed easier to perform in case of B-hadrons than for D-hadrons,
because the proper lifetimes of the first ones are longer than those of the latter.

On the theory side, analytical formulae for the hadro-production of massive quark pairs
are known since many years in quantum chromodynamics (QCD) perturbation theory at
the next-to-leading order (NLO) accuracy, both for the total cross-sections as well as for
one-particle inclusive differential distributions [1–5]. More recently, next-to-next-to-leading
order (NNLO) QCD predictions have been computed for the total cross-sections of heavy-
quark pair-production [6–9]. On the other hand, differential predictions at NNLO are
available for top-quark pair production [10, 11], but not yet for the case of charm-quark
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pair. Very recently, a first computation of differential cross-sections for bottom-quark pair
production including NNLO QCD corrections has appeared [12].

Beyond fixed-order perturbation theory, the resummation of logarithms in the ratio
pT /m, relevant when the transverse momentum of the heavy-quark pT is much larger than
its mass m, up to the next-to-leading-logarithmic accuracy, performed through the frag-
mentation function approach [13], has been combined with NLO predictions [14–16]. The
resummation of recoil logarithms related to soft gluon radiation from initial state partons,
as well as the one of threshold logarithms and high-energy logarithms, have also been
worked out (up to various degrees of accuracy) and presented in a number of papers (see
e.g. [17–22]). The transition from quarks to hadrons is described either by fragmenta-
tion functions (FFs) [23–25], or by matching NLO matrix elements to parton shower and
hadronization approaches [26–30].

One of the inputs of all aforementioned calculations are the values of the heavy-quark
masses. The SM by itself does not predict the values of the quark masses, which are thus
fundamental parameters and subject to renormalization. The ultraviolet divergences ap-
pearing in the heavy-quark self-energies, to be eliminated by renormalization, require to
fix a specific renormalization scheme for relating the bare masses to the renormalized ones.
The most common choice is the mass in the on-shell scheme, defining the pole mass by
the relation that the inverse heavy-quark propagator with momentum p vanishes on-shell,
i.e. for p2 = (mpole)2, and it is known at four loops in QCD [31, 32]. Another option, also
known at four loops [33, 34], is the MS prescription. In complete analogy to the renormal-
ization of the strong coupling constant αS , only divergent terms are absorbed such that the
quark propagator becomes finite after wave-function and mass renormalization. Finally, the
MSR scheme [35] defines a scale-dependent short-distance mass, that interpolates smoothly
between a valid mass definition at low scales much below the mass and the MS mass for
scales larger than the mass, using infrared renormalization group flow. Thus, predictions
for physical observables in perturbation theory carry scheme dependence through the choice
of a particular mass renormalization scheme. For a given observable, the behavior of the
truncated expansion in perturbative QCD, including the apparent convergence and the
residual scale dependence, can vary significantly between different schemes employed.

In this paper we describe the phenomenological effects of the use of the MS and MSR
schemes for the renormalization of the heavy-quark masses in charm, bottom and top pro-
duction at hadron colliders. We investigate the perturbative convergence in these schemes,
by providing comparisons between physical quantities calculated at various levels of ac-
curacy, and we discuss applications concerning the extraction of mass values and parton
distribution functions (PDFs) from collider data.

Various phenomenological and experimental investigations on top quark hadro-pro-
duction with top mass renormalized in the MS scheme already exist in the literature (see
e.g. [36–42]). On the other hand, the MSR mass is discussed in various theory papers,
mainly focusing on its definition and properties (see e.g. [43–45]). As for the top quark case,
the main novelties of our work are the phenomenological predictions for NLO differential
cross-sections in pp collisions using the MSR mass, which we compare to those with the MS
and pole masses in a consistent framework, the implementation of a dynamical mass renor-
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malization scale in the computation of transverse momentum distributions of the heavy-
quarks, as an alternative to the static m(m) case, and the extraction of a top MSR mass
value from the analysis of state-of-the-art LHC triple-differential cross-section data, previ-
ously used for extractingm(m) [46]. The extraction is done preserving correlations with the
strong coupling constant αS and the PDFs, fitted simultaneously to the heavy-quark mass.

Total cross-sections for charm and bottom production at hadron colliders with the mass
renormalized in the MS scheme are available since a while [47]. The MS scheme has also
been used for heavy-quark production in deep-inelastic scattering (DIS), which has allowed
extractions of the charm mass mc(mc) and bottom mass mb(mb) (see e.g. [48–50]). On the
other hand, differential cross-sections for charm and bottom production at hadron colliders
with MS and MSR masses have never been presented in a dedicated phenomenological
paper before this one, to the best of our knowledge. We show examples of them here for
the first time and discuss the relative uncertainties due to scale and mass variation, working
at NLO accuracy. In case of MS cross-sections we also show the role of variations of the
heavy-quark mass renormalization scales, comparing their effects to those induced by the
variation of other scales appearing in fixed-order computations, i.e. the factorization and
αS renormalization scales.

In recent years heavy-flavor hadro-production data at the LHC have been used to con-
strain gluon and sea quark distributions at small x in PDF fits at NLO, working in the
on-shell mass renormalization scheme [51–54]. In this work we comment on the simulta-
neous extraction of proton PDFs and the charm mass in the MS scheme, as an alternative
to the pole scheme, using LHCb and HERA data and a fitting procedure were everything
else is the same, except the charm mass renormalization scheme. Our findings at NLO
support the use of masses renormalized in the MS scheme for further fits of this kind (see
e.g. [55, 56]). We also show for the first time how LHC charm production data extrapolated
to the full phase-space can be used to constrain NNLO PDF fits, suggesting a reduction of
the uncertainties in the gluon distributions of various widely used global PDF fits [57–59].

The implementation of the MS and MSR schemes for renormalizing the heavy quark
masses, as an alternative to the on-shell scheme, is described in section 2. The obtained
theoretical predictions for differential distributions including NLO QCD corrections and
mass renormalization in these three schemes, are presented in section 3, together with
considerations on the convergence of the perturbative expansion in the strong coupling
constant. The results are applied in section 4 to investigate the impact of LHC data
on possible extractions of PDFs from collider data and on determinations of the heavy-
quark mass values in different mass renormalization schemes. In section 4.3, we also use
predictions for total cross-sections of charm hadro-production up to NNLO accuracy in
QCD. Finally, our conclusions are summarized in section 5.

2 Implementation of heavy-quark mass renormalization schemes

In this work light quarks are assumed to be massless. For the heavy-quark masses, on
the other hand, different renormalization schemes can be adopted and we briefly recall
the relevant relations for the above mentioned cases of the MS, MSR and on-shell schemes.
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Other choices for the mass renormalization are possible. For physical observables inherently
connected to the heavy-quark production threshold, for instance, the potential subtracted
mass [60] was suggested as a possibility to produce an improved perturbative convergence at
energies slightly above the quark-pair production threshold and the 1S mass has been pre-
sented [61] as a way of stabilizing the position of the peak of the vector-current-induced total
cross-section for tt̄ production in e+e− collisions, as a function of the center-of-mass energy√
s, for

√
s ∼ 2m. In boosted kinematics, limited to the case of top-quarks, the top-quark

jet-mass [62], was introduced in the framework of Soft Collinear Effective Theory. Further
mass renormalization schemes are described, e.g., in refs. [44, 45] and references therein.

The on-shell mass coincides with the pole in the propagator of the renormalized quark
field and is known up to four loops in QCD [31, 32]. Thus, it is the same at all scales and
infrared finite to all orders in perturbation theory. This definition of the pole mass mpole,
although being gauge invariant, has its short-comings [63, 64]. It does not extend beyond
perturbation theory, i.e. to full QCD, since it is based on the (unphysical) concept of colored
quarks as asymptotic states. Therefore, mpole must acquire non-perturbative corrections,
which leads to an intrinsic uncertainty in its definition of the order O(ΛQCD) related to
the renormalon ambiguity [65]. The latter manifests itself as a linear sensitivity to infrared
momenta in Feynman diagrams, leading to poorly convergent perturbative series for the
observables expressed in terms of mpole.

On the other hand, short-distance mass definitions such as the MS or the MSR schemes
are renormalon-free. In general, such short-distance massesmsd are related to the pole mass
through the relation

mpole = msd(R,µR) + δmpole-sd(R,µR) , (2.1)

where the term δmpole-sd removes the renormalon and the dependence of the short-mass
definition on long-distance aspects of QCD. Here, µR denotes renormalization scale, con-
nected with the ultraviolet divergences, whereas the scale R is associated with the infrared
renormalization group equation (RGE) [35]. In many short-distance mass renormalization
schemes, R coincides with the renormalized mass itself, as for instance in the MS scheme,
where R = m(µR). However, the possibility to consider other choices of R through the
associated RGE allows to improve the stability of the conversion between short-distance
mass schemes characterized by different values of R.

In the MS scheme, the renormalized mass of the heavy quark evolves with the RGE in
the renormalization scale µR, governed by the mass anomalous dimensions γ(αS(µR)),

µ2
R

dm(µR)
dµ2

R

= −γ(αS(µR))m(µR) , (2.2)

where the perturbative expansion of γ(αS(µR)) ≡
∑∞
i=0 γi (αS(µR)/π)i+1 is known at four

loops [33]. Precise determinations of the MS masses for charm- and bottom-quarks are
summarized by the Particle Data Group (PDG) [23]. For the MS mass of the top-quark,
see, e.g., refs. [23, 40, 41, 49, 66]. The conversion to the on-shell scheme proceeds in the
standard manner

mpole = m(µR)
(

1 +
∞∑
i=1

ci

(
αS
π

)i)
, (2.3)
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where the first numerical coefficients ci read [67–69],

c1 = 4
3 + L , (2.4)

c2 = 307
32 + 2ζ2 + 2

3ζ2ln2− 1
6ζ3 + 509

72 L+ 47
24L

2

−
( 71

144 + 1
3ζ2 + 13

36L+ 1
12L

2
)
nlf + 4

3
∑

1≤i≤nlf

∆
(

mi

m(µR)

)
. (2.5)

Here, ζ denotes the Riemann zeta-function, L ≡ ln(µ2
R/m(µR)2) and the function ∆ ac-

counts for all quarks with masses mi smaller than the heavy-quark one. As the light quarks
are taken massless here, i.e., mi = 0, the ∆ term vanishes. The strong coupling αS is eval-
uated at the scale µR and renormalized in the MS scheme with the number of active flavors
set to nf = nlf + 1 at and above the heavy-quark threshold scale, which is assumed to be
equal to its running mass. The number of light flavors is nlf = 3, 4, 5 for charm, bottom
and top production, respectively.

For the particular choice m(m) ≡ m(µR = m(µR)), i.e. the MS mass renormalized
at the specific scale µR = m(µR), the logarithmic terms L cancel and eq. (2.3) evaluates
numerically (up to terms O(α4

S)) as [70]

mpole = m(m)
[
1 + 1.333

(
αS
π

)
+ (13.44− 1.041nlf )

(
αS
π

)2

+
(
190.595− 27.0nlf + 0.653n2

lf

)(αS
π

)3
+O(α4

S)
]
. (2.6)

The infrared renormalon ambiguity in the conversion in eqs. (2.3), (2.6) manifests itself in
practice as factorially growing terms in the perturbative expansion, that spoil convergence.
The sizable coefficients in eq. (2.6) indicate the poor convergence of mpole for the case
of charm and bottom, when αS at low scales is large. For top-quarks, the convergence
is better due to the smaller value of αS at larger scales. Including the four-loop QCD
results [33, 34], the residual uncertainty in mpole for top-quarks, including renormalon
contributions, is estimated of the order of a few hundred MeV [71], i.e., of the order of
O(ΛQCD). All available relations for scheme changes from m(µR) to mpole and vice versa
have been summarized in the programs CRunDec [72] and RunDec [73].

While αS in eqs. (2.3), (2.6) is renormalized in the MS scheme, the matrix elements,
as well as the PDFs and the associated αS evolution used in the fixed-order massive calcu-
lations presented in this paper are all defined with a fixed number of light flavors nlf = 3
for charm and bottom production1 and nlf = 5 for top production, even at scales well
above the heavy-quark mass value. For αS renormalization in the decoupling scheme [77],
subtractions in graphs with light-quark loops are done at zero mass, as in the MS scheme,
whereas those in graphs with heavy-quark loops are done at zero momentum. The heavy
quarks therefore do not contribute as active flavors to the running of αS in the effective

1The use of nlf = 3 even for bottom production is justified for bottom-quark production at very low pT

(see e.g. the available measurements of B-meson production by the LHCb collaboration [74–76]).
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theory. Factorization is performed in the same scheme, which implies the use of non-
vanishing PDFs only for light partons, and a calculation of partonic cross-sections done
consistently. The latter is achieved by including contributions of virtual amplitudes cor-
responding to Feynman diagrams with massive heavy-quark fermionic loops. For the case
of bottom production in the 3-flavor scheme, we verify that including or not the relevant
charm-loop diagrams in our computations, assuming mc = 0, produces differences well
within 1% on the total cross-section of bb̄ hadro-production. We argue that including a
charm mass different from zero, as appropriate for a fully consistent calculation in the
3-flavor scheme, makes also a small effect, well below the uncertainties on cross-sections
due to scale variations. This effect compensates only partially the differences due to the
modified αs value, that, at renormalization scales of the order of the bottom quark mass,
is a few percent lower in the scheme with nf = 3 active flavors, with respect to the nf = 4
case. Possible advantages of computing bottom production in the 3-flavor scheme have also
been claimed in the framework of DIS calculations [78, 79], where the effects of including a
finite charm-mass in the fermionic loop corrections turn also out to be small. We observe
that our predictions for bottom production typically differ by some percent from those of
fully consistent calculations with matrix-elements, PDFs and αS in the 4-flavor scheme,
depending on the input.

Using the standard decoupling relations, it is possible to relate the PDFs, αS and the
partonic cross-sections in the MS and decoupling schemes, once the matching scale is fixed.
In this way, also eqs. (2.3), (2.6) can be re-expressed in terms of αS with the heavy degrees
of freedom decoupled. If the decoupling is performed at a scale equal to the MS mass
m(m), the coefficients c1 and c2 in eqs. (2.4), (2.5) remain identical due to the fact that
the leading order coefficient in the decoupling relation for α(nlf +1)

S to α(nlf )
S vanishes.

In practice, although the perturbative expansion in eqs. (2.3), (2.6) is known up to four
loops [33], we truncate it in this work to two loops (order α2

S) for computing the NNLO
cross-sections and to one loop (order αS) for computing NLO cross-sections, respectively,
unless stated otherwise. In addition, the evolution of αS as a function of µR and the
corresponding αS values entering in eqs. (2.3), (2.6) and other parts of the fixed-order
computation are evaluated retaining three loops for producing NNLO cross-sections and
two loops for producing the NLO ones, respectively, unless stated otherwise.

The MSR mass is a specific realization of the short-distance mass introduced in
eq. (2.1). It is obtained, e.g., by considering the difference between mpole and m(m),
see eq. (2.3), and substituting m(µR) with R in the terms proportional to αS to determine
the difference between mpole and mMSR(R) as

mpole = mMSR(R) +R
∞∑
i=1

ai

(
αs(R)
π

)i
, (2.7)

where the numerical coefficients ai are given in ref. [35]. The evolution of the MSR mass
with the R scale follows the RGE

R
dmMSR(R)

dR
= −RγMSR(αS(R)) , (2.8)
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Figure 1. The one-loop evolution of the MS charm-, bottom- and top-masses for varying renor-
malization scales µ (left). The one-loop evolution of the MSR charm-, bottom- and top-masses for
varying scales R (right). The values of µ and R used in the subsequent calculations and figures of
this work are marked with filled dots. The value of αS(MZ) is fixed to 0.118 and αS is evolved at
four loops, as in table 1.

which is linear in the scale R and where γMSR(αS(R)) ≡
∑∞
i=0 γ

MSR
i (αS(R)/π)i+1 denotes

the R scheme anomalous dimension. In practice, the MSR mass interpolates between the
pole and the MS mass m(m). This occurs through the dependence on the scale R, because
by construction mMSR(R)→ mpole for R→ 0 and mMSR(R)→ m(m) for R→ m(m).

In the following we use what has been called practical MSR mass in ref. [43], in con-
trast to the natural MSR mass. For our purposes the numerical differences between those
definitions are mostly negligible.

The evolution of the MS heavy-quark masses with renormalization scale is shown in
the left panel of figure 1. It is calculated at one loop using the CRunDec program [72, 73]
(nlf = 3 for charm and bottom, nlf = 5 for top). The evolution of the MSR heavy-quark
masses with the R scale at one loop is shown in the right panel of figure 1. It is obtained
by solving the RGE in eq. (2.8):

mMSR(R) = mMSR(R0)−
∫ lnR

lnR0
RγMSR(αs(R)) d lnR , (2.9)

where expressions for the first few coefficients of the anomalous dimension γMSR can be
found in refs. [35, 43]. Here, eq. (2.9) is expanded up to the lowest non-vanishing order
of αs. As is visible in figure 1, the MS mass values are decreasing with increasing values
of the renormalization scale µR. The MSR mass values are decreasing at increasing R

values, as follows from the form of the RGE for the R evolution and the fact that the
first coefficient γMSR

0 in the perturbative expansion of the anomalous dimension γMSR is
positive, cf. eq. (2.8).
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mMSR(1) mMSR(3) mMSR(9) m(m) mpl
1lp mpl

2lp mpl
3lp mpl

1lp mpl
2lp mpl

3lp
from m(m) from m(m) from MSR(3)

top-quark
171.8 171.5 170.9 162.0 169.5 171.1 171.6 171.8 172.0 172.1
172.9 172.5 171.9 163.0 170.5 172.1 172.6 172.9 173.0 173.1
173.9 173.6 173.0 164.0 171.5 173.2 173.6 173.9 174.1 174.2

bottom-quark
4.69 4.30 3.67 4.15 4.53 4.74 4.90 4.61 4.80 4.97
4.72 4.33 3.70 4.18 4.57 4.77 4.94 4.64 4.84 5.01
4.75 4.36 3.74 4.21 4.60 4.81 4.97 4.68 4.87 5.04

charm-quark
1.33 0.94 0.31 1.25 1.46 1.68 1.98 1.25 1.44 1.61
1.37 0.97 0.35 1.28 1.50 1.70 2.00 1.29 1.48 1.65
1.40 1.01 0.38 1.31 1.53 1.73 2.02 1.33 1.52 1.69

Table 1. Numerical values for heavy-quark MSR, MS and pole masses. Columns 1–3 and 4 show
the MSR masses at different R scales (1, 3 and 9GeV) and the MS mass from which they are
obtained [23, 66] using eq. (2.9) with the anomalous dimensions at three-loop for the R-evolution
of the MSR mass from the scale R0 = m(m) to R. Columns 5–7 show the one-, two- and three-loop
pole masses obtained from the conversion of the MS mass in eq. (2.3). Columns 8–10 show the
one-, two- and three-loop pole masses obtained from the conversion of the MSR mass at R = 3GeV
using eq. (2.7). All values are given in GeV. In the conversion formulas between the expression of
masses in different renormalization schemes, we use the coupling constant αS of the effective theory
including 5 active flavors in case of top and 3 active flavors in case of charm and bottom, obtained
through decoupling from the theory including one additional quark, supposed to be massive. We
fix αs(MZ)nf =5 = 0.118 (αs(MZ)nf =3 = 0.106) and we evolve αS at four loops in all cases.

In table 1 we compare the MS masses at the reference scale µref ≡ m(µref), i.e. m(m),
for charm-, bottom- and top-quarks2 with the pole massesmpole, obtained from the previous
ones by retaining different numbers of terms in the conversion formula eq. (2.3), and the
MSR massesmMSR(R) at various numerical values of the R scale obtained by using eq. (2.9)
for the evolution. For top-quarks, the MSR mass value at R = 3GeV is numerically close
to the values obtained in the on-shell scheme at two- or three loops. For bottom- or charm-
quarks on the other hand, the conversion of m(m) or mMSR(R) to the on-shell scheme
demonstrates the poor convergence of the perturbative expansion already discussed above,
cf. eq. (2.6).

3 Predictions for differential cross-sections

Predictions for cross-sections of heavy-quark production with different mass renormaliza-
tion schemes can be obtained from those in the widely used on-shell scheme by substituting
eqs. (2.3) and (2.7) in the cross-sections and performing a subsequent perturbative expan-

2For the top-quark masses, such comparisons have already been presented in ref. [39].
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sion in αs, see refs. [36, 38]. In particular, the cross-sections converted to the MS or MSR
mass schemes are determined to NLO accuracy as follows

σMS(m(µR)) =σpole(mpole)
∣∣∣∣
mpole=m(µR)

+(m(µR)−mpole)
(

dσ0

dm

)∣∣∣∣
m=m(µR)

, (3.1)

σMSR(mMSR(R)) =σpole(mpole)
∣∣∣∣
mpole=mMSR(R)

+(mMSR(R)−mpole)
(

dσ0

dm

)∣∣∣∣
m=mMSR(R)

.

Here σ0 is the Born contribution to the cross-section (proportional to O(α2
s)), and the

differences m(µR) − mpole and mMSR(R) − mpole are calculated up to the lowest non-
vanishing order in αs, such that all terms of order O(α4

s) are dropped in eq. (3.1), as
appropriate for a NLO calculation at order O(α3

s). Formulae for scheme conversions up to
NNLO haven been given in refs. [36, 38].

We are considering theory predictions for stable heavy quarks (in case of bottom and
charm augmented by FFs to describe the final state B- and D-hadrons, as for the appli-
cations in section 4). The additional impact of parton showers and the dependence of the
quark mass parameter on their cutoff [80] as well as the study of renormalon effects in obser-
vables with cuts leading to corrections of order ΛQCD in the extracted quark masses [81]
are subject of ongoing theory research.

We have computed double-differential cross-sections as functions of the transverse mo-
mentum pT and rapidity y of the heavy quark Q, and single-differential cross-sections as a
function of the invariant mass MQQ̄ of the heavy-quark pair in the on-shell, MS and MSR
mass renormalization schemes at NLO using both frameworks, MCFM [82, 83] with modifi-
cations [38, 84] and xFitter [85]. In both cases, the original NLO calculations are done in
the pole mass scheme [3, 4, 86]. The modified MCFM program [38] is capable of converting
the NLO calculations using a pole mass into those with the heavy-quark mass renormal-
ized in the MS mass scheme, in case of single-differential distributions in pT of the heavy
quark, y of the heavy quark and invariant mass MQQ̄ of the heavy-quark pair. On the
other hand, the developed xFitter framework implements the calculation of one-particle
inclusive cross-sections (i.e., with the other particle integrated over), i.e., it is capable to
compute the double-differential cross-sections as a function of pT and y of the heavy quark,
but not as a function of the invariant mass MQQ̄ of the heavy-quark pair. It converts the
pole-mass NLO cross-sections into the MS and MSR mass schemes for fully differential
distributions. The derivative of the Born contribution appearing in eq. (3.1) is calculated
semi-analytically in MCFM (see [38]), whereas it is computed numerically in xFitter, which
allows for cross-checks of both methods. The differential cross-sections in different schemes
which can be computed by MCFM and xFitter are summarized in table 2. For all cross-
sections calculated with both programs, MCFM and xFitter, (i.e. all those in the pole mass
scheme and the pT and y differential distributions in the MS mass scheme), agreement
within one percent accuracy is found.3 xFitter is also interfaced to other codes, like e.g.

3The MCFM and xFitter differential cross-sections for the production of all heavy-quarks (the latter are
based on the program HVQMNR [86]) calculated using µR = µF agree within about 1%. In view of the large
scale uncertainties at NLO this level of agreement is satisfactory.
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Cross-section pole mass scheme MS mass scheme MSR mass scheme
dσ/dpT M, X M, X X
dσ/dy M, X M, X X
dσ/dM M, X M –

d2σ/dpTdy M, X X X

Table 2. Summary of the capabilities of the MCFM (M) and xFitter (X) frameworks to compute
differential cross-sections for heavy-quark hadro-production in different mass schemes.

aMC@NLO, and thus it can be used for computing cross-sections with heavy-quark masses
renormalized in the MS scheme (instead of the pole scheme implemented in the standalone
standard version of these codes) for a wider range of processes (e.g. tt̄+j hadro-production,
see section 4.1 for the application of this interface to a phenomenological study).

In the calculations of the differential distributions presented in the following, we use
the PDG values [23] for the MS charm- and bottom-quark masses, mc(mc) = 1.28GeV and
mb(mb) = 4.18GeV, and the MS top-quark mass value mt(mt) = 163GeV [41]. Alterna-
tively, we use the MS charm-, bottom- and top-quark mass central values extracted from
the ABMP16 NLO simultaneous fit of PDFs, αS(MZ) and MS heavy-quark masses [56]:
mc(mc) = 1.18GeV, mb(mb) = 3.88GeV and mt(mt) = 162.1GeV. Although these values
are smaller than those quoted by the PDG, they allow for fully self-consistent computa-
tions when used in association with the ABMP16 αS values and PDFs.4 The pole and
MSR mass values are obtained from the previous ones, using a procedure analogous to
that adopted for building table 1, except that the αS(MZ) values are now those extracted
in the ABMP16 NLO fit (αs(MZ)nf =5 = 0.1191, αs(MZ)nf =3 = 0.1066), instead of those
used in table 1, and αS is evolved at two loops as in the fit. Specifically, for the MSR masses
mMSR
b and mMSR

t for bottom- and top-quarks the scale R = 3GeV is chosen, whereas for
charm-quarks R = 1GeV, in order to avoid using the too small value of mMSR

c at R = 3GeV
(see figure 1, right panel). For the pole masses, the values from the MS mass conversion
at one loop are chosen. The factorization and renormalization scales µR and µF are set
to µ0 =

√
4m2

Q + p2
T and the proton is described by the PDF set ABMP16 at NLO. To

estimate the theoretical uncertainties, the pair of factorization and renormalization scales,
(µR, µF ), are varied by a factor of two up and down around the nominal value µ0, both si-
multaneously and independently, and excluding the combinations (0.5, 2)µ0 and (2, 0.5)µ0,
following the conventional 7-point scale variation. All calculations are provided for pp
collisions at the LHC at a center-of-mass energy of

√
s = 7TeV.

In figure 2 the NLO differential cross-sections are shown together with their scale
uncertainties as a function of pT in different intervals of the rapidity y of the charm-quark,
and with the charm-quark mass renormalized in the pole, MS and MSR mass schemes.
These cross-sections are computed using xFitter. The changes of the cross-sections are in

4The values of mc(mc) and mb(mb) extracted in the ABMP16 fit are determined from HERA data on
open heavy-flavor production in DIS, see [49]. The low value of mb(mb) with its larger uncertainty in
particular is a consequence of using those data. See also section 4.2 and eq. (4.2).
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Figure 2. The NLO differential cross-sections for charm production at the LHC (
√
s = 7TeV) with

their scale uncertainties as a function of pT in different intervals of y of the charm-quark with the
mass renormalized in the pole, MS and MSR schemes. The lower parts of each panel display the
theoretical predictions normalized to the central values obtained in the pole mass scheme, including
scale uncertainties (upper ratio plot), or just the ratio of central predictions (lower ratio plot) in
order to magnify shape differences.
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the range of a few percent to ∼ 40%, when using the MS or MSR mass scheme instead of
the pole mass scheme, and they are more evident in the bulk of the phase space. However,
this is a small effect compared to the size of scale uncertainties at NLO. The latter amount
to a factor of ∼ 2 in the bulk of the phase space, decreasing slightly towards large pT values.
It turns out that the scale uncertainties are very similar in all mass schemes for variations
around the chosen nominal scale µR = µF =

√
4m2

c + p2
T . Modifying the value of the

charm-quark MS mass, which is set to the PDG value in figure 2, to the value extracted in
the ABMP16 NLO fit, produce results qualitatively similar, shown in figure 3. Differences
between predictions in different mass renormalization schemes in figure 3 are smaller than
in figure 2, due to the fact that the ABMP16 MS masses are smaller than the PDG ones.

In figure 4 the same comparison of NLO differential cross-sections in the various mass
renormalization schemes is presented for bottom-quark production. In this case, the im-
pact of converting the pole mass calculations into the MS or MSR schemes vary from
a few percents to 25%, which is still small compared to the NLO scale uncertainties of
the order of 50%. With the choice for the nominal scale µR = µF =

√
4m2

b + p2
T , the

scale uncertainties are similar in the pole and MSR mass schemes, whereas they are more
asymmetric and slightly smaller at low pT in the MS mass scheme. Again, modifying the
value of the bottom-quark MS mass, which is set to the PDG value in figure 4, to the
value extracted in the ABMP16 NLO fit, leads to results qualitatively similar, shown in
figure 5, with slightly smaller differences (up to ∼ 20% among predictions in different mass
renormalization schemes.

Finally, figure 6 displays the same comparison for top-quark production. In this case,
the impact of converting the pole mass calculations into the MS mass scheme is about
20% at low pT , which is no longer small compared to the NLO scale uncertainties. It
decreases towards higher pT values. When converting the cross-sections from the pole to
the MSR mass scheme, the impact is below 10% and is within the NLO scale uncertainties
for variations around the nominal scale µR = µF =

√
4m2

t + p2
T . The scale uncertainties

in the MS mass scheme are slightly smaller than in the pole mass scheme, as was already
reported previously [38], while the scale uncertainties in the MSR and pole mass schemes
are very similar. Again, modifying the value of the top-quark MS mass, which is set to
the PDG value in figure 6, to the value extracted in the ABMP16 fit, leads to predictions
qualitatively similar, shown in figure 7.

In general, the differences between predictions in different mass renormalization
schemes slightly increase with the rapidity, as can be seen in all figures 2–7.

In figures 8 and 10 we compare the theoretical uncertainties of the NLO calculations
due to variations of the quark mass values in the different mass renormalization schemes.
We use mc(mc) = 1.28±0.03GeV and mb(mb) = 4.18±0.03GeV in the MS mass scheme as
quoted by the PDG [23] and, correspondingly, mMSR

c = 1.36±0.03GeV andmMSR
b = 4.33±

0.03GeV in the MSR scheme.5 In the pole mass scheme, we set mpole
c = 1.49 ± 0.25GeV,

mpole
b = 4.57 ± 0.25GeV. The latter variations reflect the fact that the pole mass is
5The heavy-quark mass uncertainties in the MSR scheme remain the same as in the MS scheme, since in

the conversion formulas between different schemes one just adds extra terms proportional to αS , for which
one does not consider any uncertainty, see eqs. (2.6), (2.7).
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Figure 3. Same as figure 2, but for the charm-mass value mc(mc) = 1.18GeV (converted to
mMSR

c (1GeV) = 1.21GeV and mpole
c = 1.38GeV), as extracted in the ABMP16 NLO fit.
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Figure 4. Same as figure 2 for bottom production.
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Figure 5. Same as figure 4, but for the bottom-mass value mb(mb) = 3.88GeV (converted to
mMSR

b (3GeV) = 4.00GeV and mpole
b = 4.25GeV), as extracted in the ABMP16 NLO fit.
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Figure 6. Same as figure 2 for top production.
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Figure 7. Same as figure 6, but for the top-mass value mt(mt) = 162.1GeV (converted to
mMSR

t (3GeV) = 170.7GeV and mpole
t = 169.6GeV), as extracted in the ABMP16 NLO fit.
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affected by an intrinsic renormalon ambiguity of the order of ΛQCD, as already mentioned
in section 2. If we made a more conservative assumption for the uncertainties of charm
and bottom quark pole masses, using a value twice as large, i.e. ± 0.5GeV, the size of
the pole mass variation uncertainty bands in figures 8 and 10 would approximately be
doubled with respect to the one shown. This is due to the fact that the cross-sections for
charm (bottom) hadro-production in the on-shell scheme scale approximately linearly with
the charm (bottom) mass (decreasing with increasing masses), at least for values of the
charm (bottom) mass close enough to the central one considered in this work. Therefore,
calculations in the MS or MSR mass schemes afford substantially smaller uncertainties (in
particular at low pT ) due to precise input quark masses. Changing the central values of
the charm- and bottom-quark MS masses, which are set to the PDG values in figure 8
and figure 10, to the values extracted in the ABMP16 fit, mc(mc) = 1.18 ± 0.03GeV
and mb(mb) = 3.88 ± 0.13GeV (corresponding to mMSR

c = 1.21 ± 0.03GeV and mMSR
b =

4.00±0.13GeV in the MSR scheme and mpole
c = 1.38 ± 0.25GeV, mpole

b = 4.25 ± 0.25GeV
in the pole mass scheme) lead to results qualitatively similar in case of charm, shown in
figure 9, whereas for the bottom the MSR and MS mass uncertainty bands, shown in
figure 11, are enlarged with respect to those in figure 10 due to the larger uncertainty
accompanying the bottom-mass extraction in the ABMP16 fit (± 0.13GeV) as compared
to the PDG case (± 0.03GeV).

In figure 12 the single-differential cross-sections as a function of the invariant massMQQ̄

of the heavy-quark pair in the pole and MS mass scheme are shown, as calculated using
MCFM (no implementation of the MSR scheme is available for this distribution). The impact
of changing from the pole to the MS mass scheme is largest at the lowest values of MQQ̄

close to the production threshold. At a technical level, this is due to the derivative term in
eq. (3.1) becoming dominant in this kinematic region. However, this implies that the term
δmpole-sd = mpole −msd in eq. (2.1) for the conversion of mpole to a short distance mass
grows parametrically as δmpole-sd ∼ msdαS , hence is no longer small either. This situation
is realized for the MS mass definition and it persists even when changing the MS mass value,
as follows from the comparison of figure 12 with figure 13, where different m(m) values
are employed. This excludes the MS scheme from being a suitable mass renormalization
scheme for observables very close to threshold, cf. ref. [38] for a detailed analysis for the
top-quark pair invariant mass distribution. Alternative mass renormalization schemes for
observables dominated by the production threshold have been mentioned in section 2.

For comparison to current experimental data on pair-invariant massMQQ̄ distributions
in hadro-production, however, this aspect is of minor relevance. For instance, for top pro-
duction at the LHC [46, 66] the size of the lowest Mtt̄ bin is large, extending to O(50)GeV
above threshold, so that sensitivity to threshold dynamics is significantly reduced and the
MS mass scheme is still applicable in analyses of those data.

In figure 14 we show the impact of using different PDF sets (together with their
αS(MZ) value) in the rapidity distributions for charm-, bottom- and top-quarks (see also
ref. [84]). We fix the heavy-quark MS masses to the PDG values. Slight changes in the
normalization of the distributions can be ascribed to the fact that different PDF fits are
accompanied by slightly different values of αS(Mz). On the other hand, larger changes in
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Figure 8. The NLO differential cross-sections for charm production at the LHC (
√
s = 7TeV)

as a function of pT in intervals of y of the charm-quark in the pole and MS mass schemes. The
bands denote variations of the mass values in the different schemes, mpole

c = 1.49 ± 0.25GeV,
mc(mc) = 1.28± 0.03GeV and mMSR

c = 1.36± 0.03GeV. The lower panels display the theoretical
predictions normalized to the central values obtained in the pole mass scheme.
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Figure 9. Same as figure 8, but for the charm-mass value mc(mc) = 1.18 ± 0.03GeV (converted
to mMSR

c (1GeV) = 1.21 ± 0.03GeV and mpole
c = 1.38 ± 0.25GeV), as extracted in the ABMP16

NLO fit.

normalization and in shapes are related to the different behaviour of different PDFs as a
function of x and µF . In particular, in case of charm production, the shape of the rapidity
distribution obtained with the central set of the MMHT14 PDF fit [57] for pp collisions
at
√
s = 7TeV is much wider with respect to that obtained with the central PDF sets

from other widely used fits. This is particularly evident when using the MS heavy-quark
mass, instead of the pole mass, in the computation, due to the lower value of the first one
with respect to the second one, and is related to the peculiar and very flexible MMHT14
PDF parameterization and the particular behaviour of the gluon distribution at small x.
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Figure 10. Same as figure 8 for bottom production with variations of the mass values in the different
schemes as mpole

b = 4.57± 0.25GeV, mb(mb) = 4.18± 0.03GeV and mMSR
b = 4.33± 0.03GeV.

At the scales relevant for the calculation, the MMHT14 NLO central gluon distribution
steeply rises for smaller x and displays large uncertainties, in absence of data capable of
constraining it for x < 10−4 in the fit, see also ref. [87]. On the other hand, in case of top
and bottom production, the differences among predictions making use of different PDF
sets are smaller than for the charm case, because, for fixed rapidity values, these processes
probe larger (x, Q2) values, where more data have been used to constrain the various PDFs.
In particular, the predictions obtained by different PDF sets, turn out to be within the
scale uncertainty band computed using the ABMP16 NLO PDF nominal set, at least for
rapidities away from the far-forward region.
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Figure 11. Same as figure 10, but for the bottom-mass value mb(mb) = 3.88 ± 0.13GeV (converted
to mMSR

b (3GeV) = 4.00 ± 0.13GeV and mMSR
b = 4.25 ± 0.25GeV), as extracted in the ABMP16

NLO fit. The size of the uncertainties of the predictions with the heavy-quark mass renormalized
in the MS and MSR schemes are larger than in figure 10 because the uncertainties of the ABMP
MS fitted masses are larger than the uncertainties of the MS masses reported by the PDG [23].
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Figure 12. The NLO differential cross-sections at the LHC (
√
s = 7TeV) for charm (upper left),

bottom (upper right) and top (lower) hadro-production with their scale uncertainties as a function
of the invariant mass MQQ̄ of the heavy-quark pair in the pole and MS mass schemes. The lower
panels display the theoretical predictions normalized to the central values obtained in the pole
mass scheme.
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Figure 13. Same as figure 12 but for heavy-flavor MS mass values corresponding to those extracted
in the ABMP16 NLO fit.
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Figure 14. The NLO differential cross-sections at the LHC (
√
s = 7TeV) for charm (upper

panels), bottom (intermediate panels) and top (lower panels) hadro-production as a function of
the rapidity y of the produced antiquark with mass renormalized in the MS scheme, using µR =
µF =

√
p2

T + 4m2
Q(mQ) and central NLO PDF sets + αS(MZ) values from different collaborations

(CT18 [59], CT18Z [59], MMHT14 [57], NNPDF3.1 [88], ABMP16 [56]). Scale uncertainty bands
computed with our nominal set (ABMP16 NLO) are also shown.
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Additionally, in this paper we explore the possibility of using a dynamical scale in the
heavy-quark MS mass renormalization, as an alternative to the static value mQ(mQ) and
its variations used in the previous distributions and in ref. [38]. There, the pT distribution
of the top-quark at NLO was computed for static central scales µR = µF = µm = mt(mt),
varying them simultaneously by factors 1/2 and 2 around their central value and finding
that the scale uncertainty band was reduced with respect to the case when µR and µF are
varied and µm is fixed to mt(mt). In general, we expect that dynamical scales, catching the
different kinematics of different events, provide a more accurate description of differential
distributions. Thus, in the following we consider the case when the central values for the
renormalization and mass renormalization scales are chosen dynamically and coincide, i.e.,
µm = µR = µ0 =

√
p2
T + 4m2

Q(µR). We fix the central factorization scale to the same
value µF = µ0. For this configuration, we compute scale uncertainties, by two different
procedures. In the first procedure (i) we fix µR = µm even in the scale variation but we
still vary independently µR in the interval [µR,1, µR,2], where µR,1 = 0.5

√
p2
T + 4m2

Q(µR,1)

and µR,2 = 2
√
p2
T + 4m2

Q(µR,2), and µF in the interval [1/2, 2] around the chosen (mass)
renormalization scale, excluding the (µR, µF ) extreme combinations (2, 1/2) and (1/2, 2),
but keeping all the others, as in the conventional 7-point scale-variation procedure. These
variations implicitly also encode a heavy-quark mass variation, with the mass value span-
ning the interval [m(µR,2), m(µR,1)]. In the second variation procedure (ii), which is more
general than (i), we fix µR = µm = µF = µ0 =

√
p2
T + 4m2

Q(µm) in the central predictions
as before, but we vary µR, µF and µm independently from each other, each by factors 1/2
and 2 around µ0, excluding the extreme scale combinations as in the conventional scale-
variation procedure. In other words, we release the constraint µR = µm during the variation
of these scales. This procedure leads to a 7-point (µR, µF ) scale variation band at fixed
µm (not coinciding with the one of procedure (i), because there the µR = µm scales are
varied simultaneously), and to a more comprehensive 15-point (µR, µF , µm) uncertainty
band. The pT distributions obtained with the scale configuration and variation procedures
(i) and (ii) are shown in the upper, intermediate and lower left panels of figures 15 and 16
for the charm-, bottom- and top-antiquark, respectively.

For both procedures (i) and (ii), in case of charm, the (µR, µF ) uncertainty band turns
out to be larger than that computed using a fixed value of the charm-massmc(mc) and mak-
ing the standard 7-point scale variation around the central choice µ0 =

√
p2
T + 4m2

c(mc),
shown in red in the right upper panel of both figures 15 and 16. Similar considerations on
the size of the uncertainty bands in the comparison between charm results with dynamical
and static scales µm apply also to the 15-point scale variation band, computed according to
procedure (ii) and shown in blue in the left and the right upper panels of figure 16, respec-
tively for the dynamical and static µm cases. In other words, adding µm variations does
not modify the general conclusions inferred by comparing the 7-point uncertainty bands.

On the other hand, in case of top (bottom), close to the peak of the pT distribution,
i.e. in the bulk of the phase-space, the uncertainties accompanying the computation with
dynamical µm are much smaller (smaller) than for µm = mQ(mQ), as can be seen by
comparing the left and right lower (intermediate) panels of figure 15 for procedure (i)
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Figure 15. The NLO differential cross-sections at the LHC (
√
s = 7TeV) for charm (upper panels),

bottom (intermediate panels) and top (lower panels) hadro-production with their 7-point (µR, µF )
scale uncertainties as a function of the pT of the produced antiquark with mass renormalized in
the MS scheme, using for central predictions µR = µF =

√
p2

T + 4m2
Q(µm) and different mass

renormalization scales µm. The panels on the left use a dynamical mass renormalization scale
µm = µR, with these two scales varied simultaneously during µR variation (procedure (i) for scale
variation discussed in the text), whereas the panels on the right use the static mass renormalization
scale µm = mQ(mQ), with mQ(mQ) fixed to the values of the PDG (mc(mc) = 1.28GeV, mb(mb)
= 4.18GeV, mt(mt) = 163GeV). The αS(MZ) values, the αS evolution and the central PDFs
extracted from the ABMP16 NLO fit are used in all parts of the computation.
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Figure 16. Same as figure 15, but for a different scale variation procedure. For central predictions,
computed with µR = µF = µ0 =

√
p2

T + 4m2
Q(µm) the panels on the left use a dynamical mass

renormalization scale µm = µR, whereas the panels on the right use the static mass renormalization
scale µm = mQ(mQ), with mQ(mQ) fixed to the values of the PDG (mc(mc) = 1.28GeV, mb(mb)
= 4.18GeV, mt(mt) = 163GeV). Scale variations are computed according to the procedure (ii)
discussed in the text, with fully independent variations of the involved scales. The (µR, µF ) 7-point
scale variation bands at fixed µm = µ0 are shown in red, whereas the (µR, µF , µm) 15-point scale
variation bands are shown in blue. µm is varied independently of µR and µF in the interval [1/2,2]
around its central value. Central LO predictions, computed using the same (µR, µF , µm) and
m(µm) values as the central NLO ones, are also shown (green dashed line). The αS(MZ) values,
the αS evolution and the central PDFs extracted from the ABMP16 NLO fit are used in all parts
of the computation, both for NLO and for LO predictions.
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and figure 16 for procedure (ii), showing that a choice of the mass renormalization scale
coinciding with relevant scales of the hard-scattering process helps reducing uncertainties.
Scale uncertainties computed according the most general procedure (ii) are larger than
those for procedure (i) in the bulk of the phase space, with progressively reduced differences
at increasing pT in the tail of the pT distributions. The largest difference of band sizes,
amounting to a factor O(2-4) depending on the bin, is visible for top production in the
pT range [0, 200] GeV when comparing the lowest left panel of figure 16 to the lowest left
panel of figure 15. For procedure (ii), the scale-variation uncertainty band for the top pT
distribution with m(µ) has a size 40 - 50% smaller than the corresponding band obtained in
the computation with m(m), in the region around the peak, as follows from comparing the
lowest left and right panels of figure 16. In case of top-quark pair production, including or
neglecting the µm variation turns out to have a rather small impact on the size of the scale
variation uncertainty bands, as is visible in both lowest panels of figure 16. This confirms
and extends results obtained previously by other authors for the case µm = m(m) (see
ref. [38] and the total cross-sections in table 1 of ref. [42]). In case of charm a reduction
of scale uncertainties when using dynamical µm instead of static µm is not visible in any
of the scale variation configurations. Charm-quark running mass values span scale values
down to . O(1GeV), too close to the small scale value O(ΛQCD) where perturbative QCD
generally stops to be valid. On the other hand, in case of bottom and top, the running
mass values stay far from this limit (see figure 1 left) and all scales involved are well within
the domain of validity of perturbative QCD.

In figure 16 we also add leading order (LO) predictions to all panels, obtained by using
the same values of m(µm) and m(m) as in the NLO ones, and the same NLO PDFs and
αS(Mz) value. The central LO predictions are not always included in the NLO uncertainty
bands, however the LO uncertainty bands (not shown) are much larger than the NLO ones,
cf. also ref. [38] for top production.

Another example of dynamical mass renormalization scale choice was shown in ref. [42],
where the MS mass renormalization scheme was studied as an alternative to the pole mass
scheme for producing predictions for top-quark related distributions at NNLO. There the
tt̄-pair invariant mass distribution was studied at NNLO, using the MS mass at a scale
µm ∼ Mtt̄/2, setting µR = µF = Mtt̄/2 and making a 15-point scale variation of factors
(1/2, 2) around the (µR, µF , µm) central value. Predictions were compared to the case when
µm = mt(mt), seeing small differences. On the other hand, pT and rapidity distributions
were computed using static µm values. To the best of our knowledge, our paper is the first
work where the use of a dynamical µm scale in computing pT distributions for heavy-quark
hadro-production is investigated.

We checked that our NLO predictions are consistent with those reported in ref. [42],
when using their configuration. In figure 17 we present the pT distribution of the antitop-
quark for tt̄ production in pp collisions at

√
s = 13TeV, using as input the NNPDF3.1 NLO

PDF set with its αS(Mz) default value and αS evolution, i.e. one of the configurations
already considered in ref. [42], and multiple choices for the (µR, µF , µm) scales. For
fixed µm = mt(mt) = 163.7GeV, we observe that central predictions using µ0

R = µ0
F =
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Figure 17. The NLO differential cross-sections at the LHC (
√
s = 13 TeV) for top hadro-production

as a function of the pT of the produced antiquark with mass renormalized in the MS scheme, using
as input NNPDF3.1 NLO PDFs with their αS(MZ) value and αS evolution, and different (µR, µF ,
µm) combinations: in the upper panel central predictions with static scale µR = µF = mt(mt) and
µm = mt(mt) are compared to those with dynamical scales µR = µF =

√
p2

T +m2
t (µm) and to

those with dynamical scales µR = µF =
√
p2

T + 4m2
t (µm) for both µm = mt(mt) and for µm = µR.

Scale uncertainty bands, shown in the lower panel only for the cases with µm = mt(mt)), refer to
7-point (µR, µF ) variation of factors (1/2, 2) around the central values.
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√
p2
T + 4m2

t (mt) have larger (µR, µF ) uncertainty bands (especially in the peak region) and

have smaller absolute values than those using central scales µ′R = µ′F =
√
p2
T +m2

t (mt)
or µ′′R = µ′′F = mt(mt), with differences between central values at the peak amounting
to ∼ 10%, as shown in the lower panel. The latter two scale choices can be considered
better scale choices (i.e. scale choices leading to a faster perturbative convergence) for tt̄
production than the first one, as also proven by the fact that NNLO corrections, reported
in ref. [42] for the (µ′′R, µ′′F ) case in comparison to the NLO ones, are quite small. On
the other hand, the central predictions we obtained using µ′′′R = µ′′′F =

√
p2
T + 4m2

t (µ′′′R)
are in much better agreement with the previous ones than those with (µ0

R, µ0
F ), as shown

in the upper panel, and have smaller scale uncertainty bands (not reported in the plot),
which shows that the use of mt(µ′′′R) instead of mt(mt) in the dynamical scale definition
improves the perturbative convergence of the calculation, corresponding to smaller NNLO
corrections. The predictions with (µ′′′R , µ′′′F ) are larger than those with (µ0

R, µ0
F ) because

mt(µ′′′R) < mt(mt) and µ′′′R < µ0
R. The differences at the peak of the pT distribution amount

to ∆µR ∼ −14.5GeV and ∆m ∼ −7.4GeV. A similar behaviour emerges when comparing
the lowest left and right panel of figures 15 or 16, for which analogous considerations and
conclusions apply. On the other hand, if one uses a scale (µ′′′′R , µ′′′′F ) =

√
p2
T +m2

t (µ′′′′R ), one
finds central predictions only slightly larger than for the case (µ′R, µ′F ), as also shown in
the upper panel of figure 17, considering that both (mt(µ′′′′R )−mt(mt)) and (µ′′′′R − µ′R) ∼
−0.9GeV at the peak of the pT distribution.

In summary, the heavy-quark pT -distributions in figures 15, 16 and 17 with dynamical
renormalization and factorization scales of the type (µR, µF ) =

√
p2
T + κm2

Q(µm) for some
number κ = 1 . . . 4 and the quark masses in the MS scheme mQ(µm) evaluated at the
dynamical scale µm = µR directly incorporate the running effects of the mass parameter.
If compared to sufficiently precise experimental data, this offers new and complementary
ways to test the running, e.g., of the top-quark mass, cf. [66].

4 Phenomenological applications

The use of the theory results can be illustrated with a number of applications in phe-
nomenology, determining the strong coupling constant αS(MZ) and values of the top-quark
mass in the different renormalization schemes as well as constraints on PDFs by using avail-
able LHC data.

4.1 Extraction of mt(mt) and mMSR
t + αS(MZ) from differential tt̄

cross-sections at NLO

The top-quark mass can be extracted using measurements of the total or differential tt̄
production cross-sections. As an example, we use the recent CMS measurement [46] of
normalized triple-differential tt̄ cross-sections as a function of invariant mass and rapidity of
the tt̄ pair, and the number of additional jets. These observables provide decent sensitivity
to the values of mt(mt) and mMSR

t in a simultaneous fit with αs(MZ) and the PDFs, i.e. the
complete set of input theoretical parameters of fixed-order calculations for stable top-quark
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pair production. We compare the results with the ones obtained in the CMS analysis [46].
In particular, the distributions of the tt̄ invariant mass and the additional jet multiplicity
are sensitive to the top-quark mass through threshold and cone effects [37].

The QCD analysis setup follows the original CMS analysis [46], and the main settings
are summarized in the following paragraph.6 The QCD analysis is done using the xFitter
framework [85]. Theoretical predictions for the tt̄ data are obtained at NLO in the pole
mass scheme using the MadGraph5_aMC@NLO program [91], interfaced with aMCfast [92]
and ApplGrid [93] to store the calculated cross-sections bin-by-bin in the format which is
suitable for PDF fits with xFitter. The dependence of the theoretical predictions on the
top-quark mass is taken into account by generating several sets of predictions with different
values of this parameter and smoothly interpolating them in the fit. The HERA combined
inclusive DIS data [89] are included in the fit to provide constraints on the valence and sea
quark distributions and to probe the gluon distribution and αs through scaling violations,
while the CMS tt̄ data provide direct constraints on the gluon PDF and αs, as well as on
the top-quark mass as discussed in ref. [46].

In our analysis, we convert the NLO calculations for the tt̄ production cross-sections
from the pole mass scheme into the MS or MSR mass schemes according to eq. (3.1). Due to
the fact that the calculated cross-sections are stored in ApplGrid tables as bin integrated
cross-sections, it is not possible to use a dynamic scale µR = µF = H ′ = (

∑
i mT,i)/2,

defined as one half of the sum of transverse masses mT,i =
√
m2
i + p2

T,i of the final-state
partons i, since H ′ is not constant within the bin.7 Instead, we use a static scale µR =
µF = mpole

t , and we perform the extraction of the pole mass with this scale choice.
As the analysis of triple-differential tt̄ cross-sections requires NLO predictions not only

for inclusive tt̄ production (Njet ≥ 0), but even for inclusive tt̄+1 jet production (Njet ≥ 1),
MadGraph5_aMC@NLO is the only public code, among those providing such calculations, that
is already interfaced to ApplGrid. In general, also other frameworks implementing NLO
QCD corrections could be adopted, even beyond the fixed-order studies considered here,
but they are not yet interfaced with ApplGrid.

The fit results obtained using different mass schemes are given in table 3. The values of
χ2 characterize the fit quality. These values are very similar in all fit variants and illustrate
a general good description of the tt̄ data. To estimate uncertainties, we follow the procedure
from ref. [46] and determine fit, model, parametrization and scale variation uncertainties.
As in the CMS analysis, the scales are varied coherently in all bins of the measured cross-
sections. As shown in table 3, in the pole mass scheme, switching from the dynamic scale
H ′ to the static scale mpole

t modifies the extracted pole mass by about 0.6GeV, a value still
smaller than the fit uncertainties amounting to 0.7GeV, but enlarges the scale uncertainties
substantially. Therefore, the larger scale uncertainties obtained in this analysis using the
MS or MSR mass schemes, as compared to ref. [46], are explained by the usage of the static
scale in the calculations. Switching from the pole mass mpole

t to the MS mass mt(mt) or

6The detailed description of the fitting procedure can be found in ref. [46], see section 10 in particular.
7At the best of our understanding, the publicly available version of MadGraph5_aMC@NLO is not yet capable

of computing integrals over bins using a running mass, but only using a pole mass.

– 32 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
3

Settings Fit results

pole mass χ2/dof = 1364/1151, χ2
tt̄
/dof = 20/23

µR = µF = H ′ mpole
t = 170.5± 0.7(fit)± 0.1(mod)+0.0

−0.1(par)± 0.3(µ)GeV
Ref. [46] αS(MZ) = 0.1135± 0.0016(fit)+0.0002

−0.0004(mod)+0.0008
−0.0001(par)+0.0011

−0.0005(µ)

pole mass χ2/dof = 1363/1151, χ2
tt̄
/dof = 19/23

µR = µF = mpole
t mpole

t = 169.9± 0.7(fit)± 0.1(mod)+0.0
−0.0(par)+0.3

−0.9(µ)GeV
this work αS(MZ) = 0.1132± 0.0016(fit)+0.0003

−0.0004(mod)+0.0003
−0.0000(par)+0.0016

−0.0008(µ)

MS mass χ2/dof = 1363/1151, χ2
tt̄
/dof = 19/23

µR = µF = mt(mt) mt(mt) = 161.0± 0.6(fit)± 0.1(mod)+0.0
−0.0(par)+0.4

−0.8(µ)GeV
this work αS(MZ) = 0.1136± 0.0016(fit)+0.0002

−0.0005(mod)+0.0002
−0.0001(par)+0.0015

−0.0009(µ)

MSR mass, R = 3GeV χ2/dof = 1363/1151, χ2
tt̄
/dof = 19/23

µR = µF = mMSR
t mMSR

t = 169.6± 0.7(fit)± 0.1(mod)+0.0
−0.0(par)+0.3

−0.9(µ)GeV
this work αS(MZ) = 0.1132± 0.0016(fit)+0.0003

−0.0004(mod)+0.0002
−0.0000(par)+0.0016

−0.0008(µ)

Table 3. The values for αS(MZ) and the top-quark mass in different mass schemes obtained in
ref. [46] and in this work by fitting the CMS data on tt̄ production and the HERA DIS data [89]
to theoretical predictions. The fit, model (mod), parametrisation (par) and scale variation (µ)
uncertainties are reported. Also the values of χ2 are reported, as well as the partial χ2 values per
number of degrees of freedom (dof) for the tt̄ data (χ2

tt̄
) for 23 tt̄ cross-section bins in the fit. The

scale H ′ is defined in the text.

the MSR mass mMSR
t (3GeV) does not affect the scale uncertainties significantly. On the

other hand, if in the future one would know the value of the MS masses very precisely (from
some other measurement), one could use them to get accurate predictions for differential
cross-sections with smaller heavy-quark mass uncertainties, while the pole mass would be
affected by O(ΛQCD) uncertainties.

In the light of these observations, it will be worth to implement the transition to the
other mass schemes directly in the MadGraph5_aMC@NLO program8 and in further Monte
Carlo integrators/event generators, such that predictions for differential tt̄ cross-sections
in association with jets can be obtained in the format which is suitable for PDF fits in
different mass schemes and with dynamical scales. The advantages of the latter for the
running masses have been illustrated in the previous section 3.

Furthermore, in table 3 we do not observe any noticeably larger theoretical uncertainty
when fitting the MS running mass instead of the pole mass, contrary to what was reported
in refs. [40, 41]. A direct comparison of our analysis to those ones is not possible because
of the different data sets used. Our analysis is based on triple differential distributions in
the invariant mass and rapidity of the tt̄-pair and in the number of light jets, using recent

8At the moment the program MadGraph5_aMC@NLO does not compute directly cross-section integrals using
running masses and we have developed the xFitter interface to it to convert the predictions in the pole
mass scheme to the MS and MSR schemes.
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JHEP 1911 (2019) 150

Fuster et al., NLO
Eur. Phys. J. C77 (2017) 794

PDG2018, appr. NNLO
Phys. Rev. D98 (2018) 030001

Figure 18. The extracted value of mt(mt) compared to other determinations [23, 40, 41, 49]. The
world average labelled as ‘PDG2018, appr. NNLO’ is based on a single determination of the D0
collaboration [90].

precise data obtained by the CMS collaboration during the LHC Run 2 at
√
s = 13TeV,

whereas the studies in refs. [40, 41] make use of a different differential distribution (dσ/dρs,
where ρs is an observable related to the inverse of the Mtt̄j invariant mass), as measured
by the ATLAS collaboration, at different center-of-mass energies (

√
s = 7 and 8 TeV,

respectively), during Run 1. Switching from the pole mass scheme to the MSR mass scheme
with R = 3GeV changes the extracted mass value by 0.3GeV only, which is well within the
current experimental and theoretical uncertainties. On the other hand, the value of αs(MZ)
extracted from the fit does not change significantly when using different schemes, as also
shown in table 3. The obtained values are compatible with αs(MZ) = 0.1191 ± 0.0011
extracted in the ABMP16 fit at NLO [56] within two standard deviations.9

The extracted value of mt(mt) is compared with several other determinations in fig-
ure 18. In the ABMP16 analysis, the running top-quark mass was determined from mea-
surements of total top-quark pair and single-top production cross-sections in a global QCD
fit at NNLO [49]. In ref. [41] ATLAS extracted a mt(mt) value at NLO from their mea-
surement of tt̄ + 1 jet production cross-sections, while ref. [40] has obtained mt(mt) at
NLO using the ATLAS measurement of tt̄ + 1 jet production [94] on the basis of LHC
Run-1 data. Currently, the world average value of mt(mt) by the PDG [23] is based on a
single determination of this parameter by the D0 collaboration at approximate NNLO [90].
When comparing to the other determinations of mt(mt) displayed in figure 18, it is worth
to note that only the results of this work and of the ABMP16 analysis are obtained in a

9The PDG value of αs(MZ) = 0.1179 ± 0.0010 is based on comparisons to theory at NNLO and on
lattice data.
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simultaneous fit of mt(mt), αs(MZ) and PDFs, preserving correlations among these quan-
tities, while the other determinations were done using a value of αs(MZ) and a PDF set
fixed a-priori.

In line of principle, the applied methodology can be extended to the extraction of the
mc(mc) and mb(mb) mass values from measurements of charm and bottom production in
association with jets at colliders. However, this is a great challenge from the experimental
point of view, because measuring jets at low pT , where the sensitivity to the charm- and
bottom-quark mass would be particularly large, is hard.

4.2 NLO PDF fits with differential charm hadro-production cross-sections

The application of differential distributions for charm hadro-production with the MS mass
definition allows for an update of PDF fits which use heavy-flavor measurements from
the LHC, to constrain the gluon distribution at low values of the longitudinal momentum
fraction x [51–53]. In particular, constraints at the lowest x values explored nowadays
(x & 10−6) can be obtained by considering the charm hadro-production process at high
rapidities (|y| . 4.5) at the LHC, whereas the bottom hadro-production process at similar
rapidities at the LHC is sensitive to slightly larger x values (x & 10−5), with a region of
sensitivity that partially overlaps with the one of charm data. Because of the large scale de-
pendence of the NLO calculations for charm hadro-production, it is customary to include in
such fits only ratios of cross-sections, which are constructed using measurements at different
values of rapidity and/or transverse momentum, or at different center-of-mass energies.

As an example, in the PROSA analysis [51] charm and bottom hadro-production cross-
sections [74, 95] as a function of rapidity were used in ratios to the respective cross-section
in the rapidity interval 3 < y < 3.5 for each pT bin, together with the inclusive DIS
data [96] and the heavy-flavor production DIS data [97, 98] from HERA. These ratios
feature a reduced scale dependence, but, at the same time, they have reduced sensitivity to
the heavy-quark mass. We repeat this PROSA analysis using the MS heavy-quark masses
in the calculations of both the DIS structure functions [48] and the charm and bottom
hadro-production cross-sections, instead of pole masses, while all other settings are as in
ref. [51]. As a result, we observe only a small impact on the χ2 value and the fitted PDFs,
with a new central PDF that is well within the previously found PDF uncertainties. These
small differences are driven mainly by the change in the predictions for the HERA data,
because the LHCb data used in the format of normalised cross-sections do not provide
any notable sensitivity neither to the heavy-quark mass scheme, nor to the value of the
heavy-quark mass. As a result, the fitted MS heavy-quark masses are determined as

mc(mc) = 1.17± 0.05 GeV , (4.1)
mb(mb) = 3.98± 0.14 GeV , (4.2)

which can be compared with the fitted values of heavy-quark masses that arise when using
the pole masses in the theory predictions in the fit,

mpole
c = 1.26± 0.06 GeV , (4.3)

mpole
b = 4.19± 0.14 GeV . (4.4)
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The quoted uncertainties are fit uncertainties only. In the evaluation of mb(mb) we neglect
the uncertainties related to the charm mass value used in the fermionic loops appearing in
virtual corrections for bb̄ hadro- and DIS-induced production, all evaluated with mc = 0.
The MS masses in eqs. (4.1), (4.2) are compatible with the results obtained in refs. [97–
100], where the HERA data alone were analyzed to determine the heavy-quark MS masses.
The MS masses are also in better agreement with the world average values [23], than
the pole masses of eqs. (4.3), (4.4), indicating that the latter carry a significant intrinsic
theoretical uncertainty. Therefore in our most recent PDF analysis [55] we have solely
adopted heavy-quark running masses.

4.3 NNLO PDF fits with total charm hadro-production cross-section

The NLO predictions for differential charm hadro-production at the LHC have very large
scale uncertainties (> 100% in some phase space regions), as illustrated in section 3.
The lack of theory predictions for differential cross-sections on charm and bottom hadro-
production at NNLO prevents including the corresponding existing data in the state-of-
the-art PDF fits, which nowadays are mostly provided at NNLO accuracy. In this context
measurements of the total charm hadro-production cross-section would be beneficial, be-
cause they can be confronted in the PDF fits with the already available inclusive NNLO
predictions [6–9] which have significantly reduced scale uncertainties. However, no such
measurements have been performed to date.

On the other hand, the ALICE [101, 105], ATLAS [102] and LHCb [95, 103, 104] ex-
periments have provided measurements of charm production in different kinematic regions
which cover more than one half of the phase space. One can reliably determine the total
cross-section by extrapolating these measurements to the full phase space. The extrapola-
tion procedure is analogous to that adopted for extracting reduced cross-sections for charm
production in ep collisions at HERA [100] from measurements in a fiducial phase space.
These reduced cross-sections are then routinely used in global PDF fits. In the following,
we perform such extrapolations and provide the inferred values of the total cc̄ production
cross-section at different center-of-mass energies and their ratios, together with experi-
mental and theoretical uncertainties arising from the extrapolation procedure. We then
compare the results to theoretical predictions at NNLO in QCD which are obtained using
different PDF sets, and demonstrate how these data can help to reduce PDF uncertainties.

The existing most precise LHC measurements of open charm production are summa-
rized in table 4. The ALICE measurements at

√
s = 5 and 7TeV cover the central region

|y| < 0.5, the LHCb measurements at 5, 7 and 13TeV provide coverage of the forward region
2 < y < 4.5, and the ATLAS measurement at 7TeV essentially bridges the gap by provid-
ing data at |η| < 2.1. However, while both ALICE and LHCb provide measurements nearly
in the full pT range starting from 0GeV, ATLAS reports the cross-sections only for pT >
3.5GeV, thus leaving the bulk of the corresponding pT kinematic range unmeasured. Fur-
thermore, it turns out that the most precise data of ALICE and LHCb among all open D-
meson data are those for D0 production, while this final state was not measured by ATLAS.

Given these arguments, we extrapolate ALICE and LHCb measurements of D0 pro-
duction at 5 and 7TeV to the full phase space. In order to maintain the least dependence
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Measurement Final state Kinematic region
ALICE 5TeV [101] D0, D+, D∗+, D+

s 0 < pT < 36GeV, |y| < 0.5
ALICE 7TeV [101] D0, D+, D∗+, D+

s 0 < pT < 36GeV, |y| < 0.5
ATLAS 7TeV [102] D+, D∗+, D+

s 3.5 < pT < 100GeV, |η| < 2.1
LHCb 5TeV [103] D0, D+, D∗+, D+

s 0 < pT < 10GeV, 2 < y < 4.5
LHCb 7TeV [95] D0, D+, D∗+, D+

s , Λc 0 < pT < 8GeV, 2 < y < 4.5
LHCb 13TeV [104] D0, D+, D∗+, D+

s 0 < pT < 15GeV, 2 < y < 4.5

Table 4. Summary of the most precise measurements of open charm production at the LHC.

on the theoretical predictions, both ALICE and LHCb measurements are extrapolated to
nearby regions of y, namely to 0 < |y| < 1.5 and |y| > 1.5, respectively:

σtotal = σALICE ×KALICE + σLHCb ×KLHCb × 2 , (4.5)

where

KALICE =
σNLO
|y|<1.5

σNLO
|y|<0.5

, KLHCb =
σNLO
|y|>1.5

σNLO
2<|y|<4.5

. (4.6)

Here σALICE and σLHCb denote the ALICE and LHCb data on fiducial cross-sections,
respectively, and σNLO in different rapidity ranges are the theoretical predictions. The
factor 2 in the second term takes into account that the LHCb data are provided for only
2 < y < 4.5 and need to be extrapolated to 2 < |y| < 4.5. We exploit the symmetry around
y = 0 and assume that the cross-sections for 2 < y < 4.5 and −4.5 < y < −2 are equal,
as reasonably expected in case of pp collisions. Also the measurements are extrapolated
into the full range of pT (not shown in eqs. (4.5), (4.6) for brevity), which implies only a
1% correction for the LHCb data at 7TeV provided for 0 < pT < 8GeV, and even smaller
corrections for the ALICE data sets. This procedure is used to obtain the total cross-section
for D0 production at collision energies

√
s = 5 and 7TeV, while at 13TeV we extrapolate

solely the LHCb measurement since no other data are available at this energy.10

We calculate the total charm production cross-section from the D0 production cross-
section dividing the latter by the fragmentation fraction from ref. [107]:

σ(cc̄) = σ(D0 + D̄0)/(2f(c→ D0)) , f(c→ D0) = 0.6141± 0.0073 . (4.7)

The factor 2 in eq. (4.7) accounts for the fact that both c and c̄ fragment into charmed
hadrons. We assume f(c → D0) = f(c̄ → D̄0), and f(c → D̄0) = f(c̄ → D0) = 0. The
uncertainty on f(c → D0), which amounts to 1%, is neglected. We also compute ratios
of cross-sections at different center-of-mass energies R7/5 = σ7 TeV/σ5 TeV and R13/7 =
σ13 TeV/σ7 TeV, which benefit from a partial cancellation of theoretical uncertainties [108].

10Preliminary predictions on D0 production in pp collisions at
√
s = 13TeV were reported by the ALICE

collaboration in a conference proceeding [106] in 2018, but they have neither been confirmed yet nor further
refined in a regular article. In addition, the data are presented in plots, but no numerical tables are provided
in ref. [106].
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The theoretical predictions σNLO in eqs. (4.5), (4.6) are computed using the MS masses
as described in the previous sections. The hard-scattering cross-sections for heavy-quark
hadro-production are supplemented with phenomenological non-perturbative FFs to de-
scribe the c → D0 transition. The factorization and renormalization scales are chosen to
be µR = µF = µ0 =

√
4m2

c(mc) + p2
T and varied by a factor of two up and down (both

simultaneously and independently for µR and µF ) to estimate the scale uncertainties with
the conventional 7-point scale variation, leaving out the combinations (µR, µF ) = (0.5,
2)µ0 and (2, 0.5)µ0. The MS charm-quark mass is set to mc(mc) = 1.275± 0.030GeV [23].

The proton is described by the PROSA PDF set [51], which is expected to have a reli-
able gluon distribution at low x thanks to the heavy-quark data used for its determination.
Furthermore, to estimate the PDF uncertainties, the extrapolation is performed using the
ABMP16 [56], CT14 [58], MMHT2014 [57], JR14 [109], NNPDF3.1 [88] and HERAPDF2.0
FF3A [89] NLO PDF sets. Then, the envelope covering the PROSA PDF uncertainties and
the difference obtained using any of the additional PDF sets is constructed. This conser-
vative procedure is essential, because the theoretical calculations for the highest y values
involve the gluon PDF at the lowest x values (up to 4 × 10−8), which are not directly
covered by data in any of the PDF fits (not even in the PROSA fits which include the
charm data up to y = 4.5 as measured by LHCb, for which PDFs at x < 10−6 and their
uncertainties are extrapolated from the results obtained up to x ∼ 10−6, using built-in
procedures in the LHAPDF library [110]).

The fragmentation of charm-quarks into D0 mesons is described by the Kartvelishvili
function with αK = 4.4± 1.7 [51], while the fragmentation fraction f(c→ D0) cancels for
the extrapolation factors in eqs. (4.5), (4.6).

All theoretical uncertainties are assumed to be fully correlated for cross-sections in
different kinematic regions and at different center-of-mass energies. The robustness of
the extrapolation procedure is checked by varying the boundary y between the kinematic
regions into which the ALICE and LHCb measurements are extrapolated by ±0.5 (at the
same time, this variation tests consistency of the ALICE and LHCb data). As a further
check of the method, we have computed predictions for the ALICE and LHCb data using
NLO matrix elements matched, according to the Powheg method [111, 112], to parton
shower and hadronization implemented in PYTHIA8 [113], and found these predictions to
be consistent with our NLO + FF predictions within theoretical uncertainties.

The results of the extrapolation are reported in table 5. The scale, mass, PDF and frag-
mentation uncertainties are added in quadrature to obtain the total theoretical uncertainty
assigned to the extrapolated results. The experimental uncertainties of the input data are
propagated to the extrapolated cross-sections and reported separately. The experimental
uncertainties of the input data sets are assumed to be fully uncorrelated.11 The experi-
mental and theoretical extrapolation uncertainties are approximately of the same size. The
total uncertainties are obtained by adding the experimental and theoretical uncertainties
in quadrature, and amount to ≈ 10%. Our value for the total charm cross-section at 7TeV

11We are confident this is quite a reasonable assumption, already also adopted in e.g. refs. [51, 55], in
absence of more detailed information on correlation matrices in the experimental papers.
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Observable \Unc. [%] (µR, µF )
var. at NLO

MS
mass αK PDF y

Total
th. Exp. Total

σ(cc̄)5TeV/mb = 5.254 +0.8
−0.6

−0.1
+0.1

−2.0
+1.1

+4.8
−1.5

−2.0
+2.2

+5.0
−2.5 ±4.3 +6.6

−5.0

σ(cc̄)7TeV/mb = 6.311 +0.7
−0.6

−0.1
+0.1

−2.0
+1.1

+7.8
−1.9

−2.2
+2.4

+7.9
−2.8 ±6.5 +10.2

−7.1

σ(cc̄)13TeV/mb = 11.298 +0.7
−2.9

+0.2
−0.2

+1.5
−0.6

+0.0
−2.9 n/a +1.6

−4.1 ±6.1 +6.3
−7.3

R7/5 = 1.201 +0.1
−0.0

+0.0
−0.0

−0.0
+0.0

+2.9
−0.4 n/a +2.9

−0.4 ±7.8 +8.3
−7.8

R13/7 = 1.790 +1.3
−3.5

+0.2
−0.2

+3.6
−1.7

+1.0
−8.5 n/a +3.9

−9.3 ±8.9 +9.7
−12.9

Table 5. Extrapolated total charm production cross-sections and their ratios at different center-
of-mass energies together with uncertainties from parametric variations of the scales at NLO, the
mass mc(mc) ± 0.03GeV, αK ± 1.7, PDFs and the rapidity yALICE,LHCb ± 0.5. The correlation
factor between R7/5 and R13/7 is −0.61. αS uncertainties are negligible compared to the PDF ones,
computed using as a baseline the CT14 PDF set of eigenvectors at NLO.

is in agreement with the extrapolated cross-sections reported in refs. [101, 102, 114] within
uncertainties.

While the central values for the extrapolation factors in eqs. (4.5), (4.6) were obtained
at NLO, their uncertainties are calculated such that they should cover potential deviations
from the unknown true QCD result. Therefore the resulting total cross-sections, with
these uncertainties included, can be compared to calculations in any QCD scheme to any
order. Furthermore, for determining these extrapolation factors, only the shape of the
predictions for the pT and y differential cross-sections is relevant, while a large part of
theory uncertainties related to normalization cancels.

The extrapolated cross-sections and their ratios are compared to NNLO predictions
obtained using the NNLO PDF sets ABMP16 [49], CT18 [59], MMHT2014 [57], JR14 [109],
NNPDF3.1 [88] and HERAPDF2.0 [89]. The cross-sections are computed using the Hathor
program [47] interfaced in xFitter [85]. The factorization and renormalization scales are
chosen to be µR = µF = 2mc(mc) and µR and µF are varied by a factor of two up and
down according to the 7-point scale variation procedure to estimate scale uncertainties.
The MS charm-quark mass is set to mc(mc) = 1.275GeV [23].

In figure 19 we show the extrapolated cross-sections and their ratios compared to
NNLO predictions. For the NNLO predictions, the theoretical uncertainty arising from
scale variations and the PDF uncertainty are shown separately. All theoretical predictions
agree with the data within uncertainties, but noticeably the MMHT2014, HERAPDF2.0
(and CT14, not plotted in the figure) PDF sets have uncertainties which are larger than
both scale and data extrapolation uncertainties for some of the observables. In particular,
the MMHT2014 and HERAPDF2.0 predictions for the cross-sections at

√
s = 13TeV are

consistent with negative values within uncertainties (see also ref. [87]). Predictions based
on the new CT18 PDFs (and unlike those using the previous PDF set CT14) do not show
anymore a large positive uncertainty which greatly exceeds the extrapolated cross-section.
These PDF sets could benefit from including in their fits data on charm production cross-
sections or on their ratios.
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Figure 19. Comparison of the extrapolated total charm production cross-sections and their ratios
with the NNLO theoretical predictions using different PDF sets. Uncertainties from scale variations
at NNLO (µ) and PDFs are shown separately.

– 40 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
3

 x  
6−

10
5−

10 4−10
3−

10 2−10 1−10 1

)
2

 x
g

(x
,Q

100−

50−

0

50

100

 
2

 = 10 GeV2Q
MMHT2014

13/7 + R7/5MMHT2014 + R

 x  
6−

10
5−

10 4−10
3−

10 2−10 1−10 1

)
2

 x
g

(x
,Q

40−

20−

0

20

40

60

80

100

120

140

160

 
2

 = 100 GeV2Q
MMHT2014

13/7 + R7/5MMHT2014 + R

Figure 20. The gluon distribution of the original and profiled MMHT2014 NNLO PDF set at
Q2 = 10GeV2 (left) and Q2 = 100GeV2 (right).

Remarkably, also the scale uncertainties appear to be different when using different
PDF sets. Among the considered observables, the most conclusive one is R7/5 for which
both data extrapolation and theoretical scale uncertainties are moderate (≈ 10%). Our
extrapolated value for this observable can be used in future NNLO PDF fits to constrain
the gluon PDF at low x. The other ratio R13/7 has a larger extrapolation uncertainty
suffering from a lack of experimental measurements of charm production in the central
rapidity region at 13TeV. We are confident that this lack will be solved by the data which
will appear in forthcoming experimental studies at the LHC (see footnote 10).

As a demonstration that the provided observables can indeed constrain the PDFs, we
employ a profiling technique [115] based on minimizing the χ2 function built from data and
theoretical predictions, taking into account both data and theoretical uncertainties arising
from PDF variations. The analysis is performed using the xFitter program [85]. We
consider the MMHT2014 PDF set at NNLO and the ratios R7/5, which exhibits the least
scale uncertainties, and R13/7. The correlation of R7/5 and R13/7 due to the common input
of 7TeV data sets is taken into account. The PDF uncertainties are included in the χ2

functional through nuisance parameters, and the values of these nuisance parameters at the
minimum are interpreted as optimised (or profiled) PDFs, while their uncertainties deter-
mined using the tolerance criterion of ∆χ2 = 1 correspond to the new PDF uncertainties.

The original and the profiled MMHT2014 gluon PDF are shown in figure 20 at the
scales Q2 = 10 and 100GeV2. The profiled distribution exhibits greatly reduced uncertain-
ties at low x, and in this region the distribution is shifted towards larger values of the gluon
density. In case of the MMHT2014 set, the original gluon PDF is negative at low x values,
while the profiled one remains positive down to at least x ∼ 5·10−6, thanks to the constraint
realized by adding the ratios of charm data in the PDF fit. We emphasize that the strong
impact at low x is obtained as well when working with other PDF sets. As an example,
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Figure 21. Same as figure 20, but for the CT18 PDF at Q2 = 10GeV2 (up left) and Q2 = 100GeV2

(up right) and for the CT14 PDF at Q2 = 10GeV2 (down left) and Q2 = 100GeV2 (down right),
all at NNLO.

in figure 21 the CT14 and CT18 gluon distributions are shown before and after profiling.
For these sets the gluon PDF is always positive in the entire x range for all eigenvectors
by construction. In case of CT14, adding the aforementioned data strongly reduces PDF
uncertainties at low x, whereas the effect is milder for CT18, but still sizable at low Q2.

5 Conclusions

The hadro-production of heavy-quarks is an important class of processes at LHC. Not only
for top, but also for bottom and charm, a wealth of very precise high-statistics data has
been collected by the LHC collaborations, differential in the relevant kinematic variables,
such as the transverse momentum pT , the rapidity y or the pair-invariant mass MQQ̄ of the
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heavy-quarks (or of the respective heavy hadrons). In comparison to theory predictions in
perturbative QCD, these data can be directly used for the extraction of heavy-quark masses,
which are typically correlated with the value of the strong coupling constant αS(MZ). The
data also have an impact on fits of fundamental non-perturbative QCD parameters such
as PDFs, where they give unique kinematic constraints.

In order to provide meaningful determinations of heavy-quark masses, the value of
αS(MZ) and PDFs, QCD predictions with good accuracy are needed. Theory predictions
are available at NNLO for top-quark hadro-production since some time, also for differ-
ential distributions. Very recently differential predictions have also appeared for bottom
pair hadro-production, but not for charm pair. In the latter case, the predictions at NLO
accuracy are generally not sufficiently precise enough considering the large theoretical un-
certainties, which stem predominantly from scale variations. In view of the much smaller
experimental uncertainties reached in modern analyses improvements in the theoretical
descriptions are clearly required.

One such aspect, which has been studied in this paper, is the choice of a suitable renor-
malization scheme for the heavy quark masses. We have investigated different heavy-quark
mass renormalization schemes with emphasis on the MS and MSR masses as representative
short-distance mass definitions. The choice of a particular mass scheme as well as the values
for the scales µR and µF have an impact on the rate of apparent convergence of the per-
turbative expansion of the cross-sections. We have investigated a range of dynamical scale
choices for the cross-sections and, in case of the MS mass, also for the mass renormalization
scale µm. In particular, we have found that dynamical renormalization and factorization
scales of the type (µR, µF ) '

√
p2
T + κm2

Q(µm) for heavy-quark pT -distributions with the
running of mass mQ(µm) included and µm set equal to µR, when mQ(µm) does not re-
duce to a value below about 1GeV, can lead to reduced residual scale uncertainties, with
respect to the use of the analogous functional form with mQ(µm) replaced by mQ(m).
The amount of reduction depends on the input parameters of the computation and on the
convention adopted for scale variation. The most general scale variation procedure that
we have considered corresponds to independent variations of µR, µF and µm in the range
[1/2, 2] around their respective central values. The resulting 7-point envelope in (µR, µF )
keeping µm = µ0

m dominates the total uncertainty band, i.e. adding an independent µm
variation for a 15-point envelope in (µR, µF , µm) increases the size of the band only by a
moderate amount. This confirms previous findings by other authors in case of top quark
pairs. The maximum amount of scale uncertainty reduction that we have observed when
adopting this scale variation procedure, when comparing pT distributions with mQ(µm)
to those with mQ(m) with the input configuration of figure 16 (κ = 4), occurs in case of
top-antitop production and amounts to a few tens percent in the region around the peak of
the top-quark pT distribution. At NLO accuracy in QCD scale uncertainties are, however,
in general still large for all mass schemes, but theory predictions using MS or MSR masses
carry smaller parametric uncertainties in the mass values, being theoretically well-defined
and free of renormalon ambiguities.

We have demonstrated these features in extractions of the top-quark MS and MSR
masses at NLO from recent differential distributions measured by CMS, finding good con-
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sistency with other determinations. These extractions were performed simultaneously to
the one of αS and PDFs, preserving correlations between these quantities. Using differential
charm hadro-production cross-sections we have also been able to improve available con-
straints on PDFs and, using the MS mass scheme, to decrease extrapolation uncertainties
when determining total cross-section from open charm data measured in fiducial regions
of phase space by the LHC collaborations. In the latter case, ratios of cross-sections are
particularly useful observables to cancel residual theoretical uncertainties. In order to carry
out theses studies, we have developed software frameworks using the MCFM and xFitter
programs to determine differential distributions at NLO in QCD efficiently.

Avenues for theoretical improvements include the obviously needed QCD predictions
for charm hadro-production at NNLO accuracy, possibly combined with the resummation
of large logarithms in specific kinematics, but also an improved description of charm- and
bottom-quark fragmentation to mesons, an issue which has been side-stepped in the present
analysis. In addition, further systematic studies of different (µR, µF , µm) dynamical scale
choices for different differential distributions of heavy-quark hadro-production are desirable.

The extended xFitter program, implementing the MSR and MS mass renormalization
schemes, as an alternative to the on-shell scheme in heavy-quark hadro-production, is
publicly available on the web, and further extensions of the MCFM and Hathor programs
used to perform calculations in this paper are available from the authors upon request.
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