Skip to main content

Top-quark partial compositeness beyond the effective field theory paradigm

A preprint version of the article is available at arXiv.

Abstract

In theories of Partial Compositeness the top quark is a mixture of a composite and an elementary state, and as a consequence its interactions with gauge bosons are expected to deviate from those of a point-like object. At sufficiently large energies, such deviations cannot be parametrized by the leading effective field theory operators and form factors (i.e. energy dependent interactions) must be introduced. In this work, we argue that such effects might appear at relatively low energies with interesting phenomenological consequences. In analogy to the proton electromagnetic interactions, we devise a simplified phenomenological model that parametrizes the top-quark interactions with gluons in terms of two form factors. We study the implications of these interactions in top-quark and heavy top-partner pair production at a hadron collider.

References

  1. D.B. Kaplan, Flavor at SSG energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys.B 365 (1991) 259 [INSPIRE].

    ADS  Article  Google Scholar 

  2. G. Ferretti, Gauge theories of partial compositeness: scenarios for run- II of the LHC, JHEP06 (2016) 107 [arXiv: 1604 . 06467] [INSPIRE].

  3. G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv: 1312 .5330] [INSPIRE].

  4. G. Ferretti, UV completions of partial compositeness: the case for a SU(4) gauge group , JHEP06 (2014) 142 [arXiv:1404.7137] [INSPIRE].

    ADS  Article  Google Scholar 

  5. D. Buarque Franzosi and G. Ferretti, Anomalous dimensions of potential top-partners, SciPost Phys.7 (2019) 027 [arXiv:1905.08273] [INSPIRE].

    ADS  Article  Google Scholar 

  6. L.L. Foldy, The electron-neutron interaction, Phys. Rev.87 (1952) 693 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys.B 254 (1985) 299 [INSPIRE].

    ADS  Article  Google Scholar 

  8. L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP02 (2017) 094 [arXiv:1506.00623] [INSPIRE].

    ADS  Article  Google Scholar 

  9. F. Sannino, A. Strumia, A. Tesi and E. Vigiani, Fundamental partial compositeness, JHEP11 (2016) 029 [arXiv:1607.01659] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP08 (2012) 013 [arXiv:1205.0770] [INSPIRE].

    ADS  Article  Google Scholar 

  11. A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP08 (2012) 135 [arXiv:1205.6434] [INSPIRE].

    ADS  Article  Google Scholar 

  12. H.-L. Li, L.-X. Xu, J.-H. Yu and S.-H. Zhu, EFTs meet Higgs nonlinearity, compositeness and (neutral) naturalness, JHEP09 (2019) 010 [arXiv:1904.05359] [INSPIRE].

    ADS  Article  Google Scholar 

  13. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP05 (2013) 069 [arXiv:1211.5085] [INSPIRE].

    ADS  Article  Google Scholar 

  14. C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP10 (2013) 160 [arXiv:1306.4655] [INSPIRE].

    ADS  Article  Google Scholar 

  15. A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental composite electroweak dynamics: status at the LHC, Phys. Rev.D 95 (2017) 015028 [arXiv:1502.04718] [INSPIRE].

    ADS  Google Scholar 

  16. D. Buarque Franzosi, G. Cacciapaglia and A. Deandrea, Sigma-assisted low scale composite Goldstone-Higgs, Eur. Phys. J.C 80 (2020) 28 [arXiv:1809.09146] [INSPIRE].

    ADS  Article  Google Scholar 

  17. F. Iachello, A.D. Jackson and A. Lande, Semiphenomenological fits to nucleon electromagnetic form-factors, Phys. Lett.B 43 (1973) 191 [INSPIRE].

    ADS  Article  Google Scholar 

  18. F. Iachello and Q. Wan, Structure of the nucleon from electromagnetic timelike form factors, Phys. Rev.C 69 (2004) 055204 [INSPIRE].

    ADS  Google Scholar 

  19. R. Bijker and F. Iachello, Re-analysis of the nucleon space- and time-like electromagnetic form-factors in a two-component model, Phys. Rev.C 69 (2004) 068201 [nucl-th/0405028] [INSPIRE].

  20. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.B 234 (1984) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  21. S.J. Brodsky and G.R. Farrar, Scaling laws at large transverse momentum, Phys. Rev. Lett.31 (1973) 1153 [INSPIRE].

    ADS  Article  Google Scholar 

  22. G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev.D 22 (1980) 2157 [INSPIRE].

    ADS  Google Scholar 

  23. V. Ayyar et al., Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev.D 97 (2018) 114505 [arXiv:1801.05809] [INSPIRE].

    ADS  Google Scholar 

  24. T. Hippchen, J. Haidenbauer, K. Holinde and V. Mull, Meson-baryon dynamics in the nucleon-anti-nucleon system. 1. The nucleon-anti-nucleon interaction, Phys. Rev.C 44 (1991) 1323 [INSPIRE].

  25. P. Mergell, U.G. Meissner and D. Drechsel, Dispersion theoretical analysis of the nucleon electromagnetic form-factors, Nucl. Phys.A 596 (1996) 367 [hep-ph/9506375] [INSPIRE].

  26. M.A. Belushkin, H.W. Hammer and U.G. Meissner, Dispersion analysis of the nucleon form-factors including meson continua, Phys. Rev.C 75 (2007) 035202 [hep-ph/0608337] [INSPIRE].

  27. T. Bauer, J.C. Bernauer and S. Scherer, Electromagnetic form factors of the nucleon in effective field theory, Phys. Rev.C 86 (2012) 065206 [arXiv:1209.3872] [INSPIRE].

    ADS  Google Scholar 

  28. J.M. Alarcón and C. Weiss, Nucleon form factors in dispersively improved chiral effective field theory II: electromagnetic form factors, Phys. Rev.C 97 (2018) 055203 [arXiv:1710.06430] [INSPIRE].

    ADS  Google Scholar 

  29. C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev.D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].

    ADS  Google Scholar 

  30. C. Englert, A. Freitas, M. Spira and P.M. Zerwas, Constraining the intrinsic structure of top-quarks, Phys. Lett.B 721 (2013) 261 [arXiv:1210.2570] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. C. Englert, D. Goncalves and M. Spannowsky, Nonstandard top substructure, Phys. Rev.D 89 (2014) 074038 [arXiv:1401.1502] [INSPIRE].

    ADS  Google Scholar 

  32. M. Fabbrichesi, M. Pinamonti and A. Tonero, Stringent limits on top-quark compositeness from t \( \overline{t} \)production at the Tevatron and the LHC, Phys. Rev.D 89 (2014) 074028 [arXiv:1307.5750] [INSPIRE].

    ADS  Google Scholar 

  33. W. Bernreuther and Z.-G. Si, Top quark spin correlations and polarization at the LHC: Standard Model predictions and effects of anomalous top chromo moments, Phys. Lett.B 725 (2013) 115 [Erratum ibid.B 744 (2015) 413] [arXiv:1305.2066] [INSPIRE].

  34. G. Durieux and O. Matsedonskyi, The top-quark window on compositeness at future lepton colliders, JHEP01 (2019) 072 [arXiv:1807.10273] [INSPIRE].

    ADS  Article  Google Scholar 

  35. D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev.D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].

    ADS  Google Scholar 

  36. D. Barducci, M. Fabbrichesi and A. Tonero, Constraints on top quark nonstandard interactions from Higgs and t \( \overline{t} \)production cross sections, Phys. Rev.D 96 (2017) 075022 [arXiv:1704.05478] [INSPIRE].

    ADS  Google Scholar 

  37. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys.B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].

    ADS  Article  Google Scholar 

  38. J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev.D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].

    ADS  Google Scholar 

  39. R. Benbrik et al., Signatures of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons, arXiv:1907.05929 [INSPIRE].

  40. M. Poppe, Exclusive hadron production in two photon reactions, Int. J. Mod. Phys.A 1 (1986) 545 [INSPIRE].

    ADS  Article  Google Scholar 

  41. M. K-łusek-Gawenda, P. Lebiedowicz, O. Nachtmann and A. Szczurek, From the γγ → p \( \overline{p} \)reaction to the production of p \( \overline{p} \)pairs in ultraperipheral ultrarelativistic heavy-ion collisions at the LHC, Phys. Rev.D 96 (2017) 094029 [arXiv:1708.09836] [INSPIRE].

    ADS  Google Scholar 

  42. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  43. T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. Proc. Suppl.89 (2000) 231 [hep-ph/0005029] [INSPIRE].

  44. ATLAS collaboration, Measurements of top-quark pair differential and double-differential cross-sections in the ℓ+jets channel with pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Eur. Phys. J.C 79 (2019) 1028 [arXiv:1908.07305] [INSPIRE].

  45. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  46. A. Buckley et al., Rivet user manual, Comput. Phys. Commun.184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    ADS  Article  Google Scholar 

  47. D. Buarque Franzosi, F. Fabbri and S. Schumann, Constraining scalar resonances with top-quark pair production at the LHC, JHEP03 (2018) 022 [arXiv:1711.00102] [INSPIRE].

    Article  Google Scholar 

  48. FCC collaboration, HE-LHC: the High-Energy Large Hadron Collider, Eur. Phys. J. ST228 (2019) 1109 [INSPIRE].

  49. A. Denig and G. Salme, Nucleon electromagnetic form factors in the timelike region, Prog. Part. Nucl. Phys.68 (2013) 113 [arXiv:1210.4689] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Buarque Franzosi.

Additional information

ArXiv ePrint: 1908.06996

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franzosi, D.B., Tonero, A. Top-quark partial compositeness beyond the effective field theory paradigm. J. High Energ. Phys. 2020, 40 (2020). https://doi.org/10.1007/JHEP04(2020)040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2020)040

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Technicolor and Composite Models