R. Feynman, Photon-hadron interactions, Advanced Books Classics, Avalon Publishing (1998).
K.-F. Liu, Parton degrees of freedom from the path integral formalism, Phys. Rev.
D 62 (2000) 074501 [hep-ph/9910306] [INSPIRE].
W. Detmold and C.J.D. Lin, Deep-inelastic scattering and the operator product expansion in lattice QCD, Phys. Rev.
D 73 (2006) 014501 [hep-lat/0507007] [INSPIRE].
V. Braun and D. Mueller, Exclusive processes in position space and the pion distribution amplitude, Eur. Phys. J.
C 55 (2008) 349 [arXiv:0709.1348] [INSPIRE].
ADS
Article
Google Scholar
X. Ji, Parton physics on a Euclidean lattice, Phys. Rev. Lett.
110 (2013) 262002 [arXiv:1305.1539] [INSPIRE].
ADS
Article
Google Scholar
Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev.
D 98 (2018) 074021 [arXiv:1404.6860] [INSPIRE].
ADS
Google Scholar
A.V. Radyushkin, Quasi-parton distribution functions, momentum distributions and pseudo-parton distribution functions, Phys. Rev.
D 96 (2017) 034025 [arXiv:1705.01488] [INSPIRE].
ADS
MathSciNet
Google Scholar
A.J. Chambers et al., Nucleon structure functions from operator product expansion on the lattice, Phys. Rev. Lett.
118 (2017) 242001 [arXiv:1703.01153] [INSPIRE].
ADS
Article
Google Scholar
C. Best et al., Pion and rho structure functions from lattice QCD, Phys. Rev.
D 56 (1997) 2743 [hep-lat/9703014] [INSPIRE].
Zeuthen-Rome (ZeRo) collaboration, Non-perturbative pion matrix element of a twist-2 operator from the lattice, Eur. Phys. J.
C 40 (2005) 69 [hep-lat/0405027] [INSPIRE].
C. Alexandrou et al., Nucleon Spin and Momentum Decomposition Using Lattice QCD Simulations, Phys. Rev. Lett.
119 (2017) 142002 [arXiv:1706.02973] [INSPIRE].
ADS
Article
Google Scholar
M. Oehm et al., 〈x〉 and 〈x
2〉 of the pion PDF from lattice QCD with N
f = 2 + 1 + 1 dynamical quark flavors, Phys. Rev.
D 99 (2019) 014508 [arXiv:1810.09743] [INSPIRE].
K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Lattice QCD exploration of parton pseudo-distribution functions, Phys. Rev.
D 96 (2017) 094503 [arXiv:1706.05373] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Radyushkin, One-loop evolution of parton pseudo-distribution functions on the lattice, Phys. Rev.
D 98 (2018) 014019 [arXiv:1801.02427] [INSPIRE].
ADS
Google Scholar
J.-H. Zhang, J.-W. Chen and C. Monahan, Parton distribution functions from reduced Ioffe-time distributions, Phys. Rev.
D 97 (2018) 074508 [arXiv:1801.03023] [INSPIRE].
ADS
Google Scholar
T. Izubuchi et al., Factorization theorem relating euclidean and light-cone parton distributions, Phys. Rev.
D 98 (2018) 056004 [arXiv:1801.03917] [INSPIRE].
ADS
Google Scholar
J. Karpie, K. Orginos, A. Radyushkin and S. Zafeiropoulos, Parton distribution functions on the lattice and in the continuum, EPJ Web Conf.
175 (2018) 06032 [arXiv:1710.08288] [INSPIRE].
Article
Google Scholar
X. Xiong, X. Ji, J.-H. Zhang and Y. Zhao, One-loop matching for parton distributions: nonsinglet case, Phys. Rev.
D 90 (2014) 014051 [arXiv:1310.7471] [INSPIRE].
ADS
Google Scholar
I.W. Stewart and Y. Zhao, Matching the quasiparton distribution in a momentum subtraction scheme, Phys. Rev.
D 97 (2018) 054512 [arXiv:1709.04933] [INSPIRE].
ADS
MathSciNet
Google Scholar
H.-W. Lin, J.-W. Chen, S.D. Cohen and X. Ji, Flavor structure of the nucleon sea from lattice QCD, Phys. Rev.
D 91 (2015) 054510 [arXiv:1402.1462] [INSPIRE].
ADS
Google Scholar
C. Alexandrou et al., Lattice calculation of parton distributions, Phys. Rev.
D 92 (2015) 014502 [arXiv:1504.07455] [INSPIRE].
ADS
Google Scholar
J.-W. Chen et al., Nucleon helicity and transversity parton distributions from lattice QCD, Nucl. Phys.
B 911 (2016) 246 [arXiv:1603.06664] [INSPIRE].
ADS
Article
MATH
Google Scholar
C. Alexandrou et al., Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett.
121 (2018) 112001 [arXiv:1803.02685] [INSPIRE].
ADS
Article
Google Scholar
J.-H. Zhang et al., Pion distribution amplitude from lattice QCD, Phys. Rev.
D 95 (2017) 094514 [arXiv:1702.00008] [INSPIRE].
ADS
Google Scholar
X. Ji, J.-H. Zhang and Y. Zhao, More on large-momentum effective theory approach to parton physics, Nucl. Phys.
B 924 (2017) 366 [arXiv:1706.07416] [INSPIRE].
ADS
Article
MATH
Google Scholar
A.V. Radyushkin, Structure of parton quasi-distributions and their moments, Phys. Lett.
B 788 (2019) 380 [arXiv:1807.07509] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Karpie, K. Orginos and S. Zafeiropoulos, Moments of Ioffe time parton distribution functions from non-local matrix elements, JHEP
11 (2018) 178 [arXiv:1807.10933] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.-W. Chen et al., Parton distribution function with nonperturbative renormalization from lattice QCD, Phys. Rev.
D 97 (2018) 014505 [arXiv:1706.01295] [INSPIRE].
ADS
Google Scholar
W. Broniowski and E. Ruiz Arriola, Partonic quasidistributions of the proton and pion from transverse-momentum distributions, Phys. Rev.
D 97 (2018) 034031 [arXiv:1711.03377] [INSPIRE].
ADS
Google Scholar
Y.-Q. Ma and J.-W. Qiu, Exploring partonic structure of hadrons using ab initio lattice QCD calculations, Phys. Rev. Lett.
120 (2018) 022003 [arXiv:1709.03018] [INSPIRE].
ADS
Article
Google Scholar
K.-F. Liu and S.-J. Dong, Origin of difference between
\( \overline{d} \)
and ū partons in the nucleon, Phys. Rev. Lett.
72 (1994) 1790 [hep-ph/9306299] [INSPIRE].
G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: exploring universality and higher-twist effects, Phys. Rev.
D 98 (2018) 094507 [arXiv:1807.06671] [INSPIRE].
ADS
Google Scholar
R.S. Sufian et al., Pion valence quark distribution from matrix element calculated in lattice QCD, arXiv:1901.03921 [INSPIRE].
H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper, Prog. Part. Nucl. Phys.
100 (2018) 107 [arXiv:1711.07916] [INSPIRE].
ADS
Article
Google Scholar
K. Cichy and M. Constantinou, A guide to light-cone PDFs from lattice QCD: an overview of approaches, techniques and results, arXiv:1811.07248 [INSPIRE].
C. Monahan, Recent developments in x-dependent structure calculations, PoS(LATTICE
2018)018 [arXiv:1811.00678] [INSPIRE].
LP3 collaboration, Improved parton distribution functions at the physical pion mass, Phys. Rev.
D 98 (2018) 054504 [arXiv:1708.05301] [INSPIRE].
G. Backus and F. Gilbert, The resolving power of gross Earth data, Geophys. J. Int.
16 (1968) 169.
ADS
Article
MATH
Google Scholar
S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes in C: the art of scientific computing, Cambridge University Press, Cambridge U.K. (1992).
MATH
Google Scholar
B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Pion quasiparticle in the low-temperature phase of QCD, Phys. Rev.
D 92 (2015) 094510 [arXiv:1506.05732] [INSPIRE].
ADS
Google Scholar
R.-A. Tripolt, P. Gubler, M. Ulybyshev and L. Von Smekal, Numerical analytic continuation of Euclidean data, Comput. Phys. Commun.
237 (2019) 129 [arXiv:1801.10348] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Liang, K.-F. Liu and Y.-B. Yang, Lattice calculation of hadronic tensor of the nucleon, EPJ Web Conf.
175 (2018) 14014 [arXiv:1710.11145] [INSPIRE].
Article
Google Scholar
M.V. Ulybyshev, C. Winterowd and S. Zafeiropoulos, Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method, EPJ Web Conf.
175 (2018) 03008 [arXiv:1710.06675] [INSPIRE].
Article
Google Scholar
M. Ulybyshev, C. Winterowd and S. Zafeiropoulos, Collective charge excitations and the metal-insulator transition in the square lattice Hubbard-Coulomb model, Phys. Rev.
B 96 (2017) 205115 [arXiv:1707.04212] [INSPIRE].
ADS
Article
Google Scholar
S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP
05 (2002) 062 [hep-ph/0204232] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.
C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
NNPDF collaboration, Parton distributions for the LHC Run II, JHEP
04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys.
B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].
ADS
Article
MATH
Google Scholar
NNPDF collaboration, Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys.
B 849 (2011) 112 [Erratum ibid.
B 854 (2012) 926] [arXiv:1012.0836] [INSPIRE].
J. Rojo, Machine Learning tools for global PDF fits, talk given at the 13th
Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII), July 31–August 6, Maynooth, Ireland (2018), arXiv:1809.04392 [INSPIRE].
J. Skilling and S.F. Gull, Bayesian maximum entropy image reconstruction, Lecture Notes — Monograph Series volume 20, Institute of Mathematical Statistics, Hayward, U.S.A. (1991).
M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys.
46 (2001) 459 [hep-lat/0011040] [INSPIRE].
A. Rothkopf, Improved maximum entropy analysis with an extended search space, J. Comput. Phys.
238 (2013) 106 [arXiv:1110.6285] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for euclidean quantum field theories, Phys. Rev. Lett.
111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].
ADS
Article
Google Scholar
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.
C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
ADS
Article
Google Scholar
B. Carpenter et al., Stan: a probabilistic programming language, J. Stat. Softw.
76 (2017).