Skip to main content

Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

A preprint version of the article is available at arXiv.

Abstract

The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

References

  1. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  2. P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  3. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  Article  Google Scholar 

  4. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 13-14 Feb 1979 [INSPIRE].

  5. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Proceedings of the Supergravity Workshop, New York U.S.A., 27-28 Sep 1979, PRINT-80-0576 [arXiv:1306.4669] [INSPIRE].

  6. J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases, JHEP 11 (2004) 057 [hep-ph/0410298] [INSPIRE].

  7. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  8. J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J.W.F. Valle, Lepton flavor nonconservation at high-energies in a superstring inspired standard model, Phys. Lett. B 187 (1987) 303 [INSPIRE].

    ADS  Article  Google Scholar 

  9. G.C. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [INSPIRE].

    ADS  Article  Google Scholar 

  10. W. Buchmüller and D. Wyler, Dilatons and Majorana neutrinos, Phys. Lett. B 249 (1990) 458 [INSPIRE].

    ADS  Article  Google Scholar 

  11. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].

  12. J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

    ADS  Google Scholar 

  13. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].

    ADS  Article  Google Scholar 

  14. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

  15. LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

  16. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in the MiniBooNE experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].

  17. G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  18. P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

  19. J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].

    ADS  Article  Google Scholar 

  20. C. Giunti, Light sterile neutrinos: status and perspectives, Nucl. Phys. B 908 (2016) 336 [arXiv:1512.04758] [INSPIRE].

    ADS  Article  Google Scholar 

  21. G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, Sterile neutrino fits to short baseline data, Nucl. Phys. B 908 (2016) 354 [arXiv:1602.00671] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. LAr1-ND, ICARUS-WA104 and MicroBooNE collaborations, M. Antonello et al., A proposal for a three detector short-baseline neutrino oscillation program in the Fermilab booster neutrino beam, arXiv:1503.01520 [INSPIRE].

  23. A. Broncano, M.B. Gavela and E.E. Jenkins, The effective Lagrangian for the seesaw model of neutrino mass and leptogenesis, Phys. Lett. B 552 (2003) 177 [Erratum ibid. B 636 (2006) 332] [hep-ph/0210271] [INSPIRE].

  24. E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [INSPIRE].

  25. Z.-z. Xing, Correlation between the charged current interactions of light and heavy Majorana neutrinos, Phys. Lett. B 660 (2008) 515 [arXiv:0709.2220] [INSPIRE].

    ADS  Article  Google Scholar 

  26. Z.-z. Xing, A full parametrization of the 6 × 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos, Phys. Rev. D 85 (2012) 013008 [arXiv:1110.0083] [INSPIRE].

    ADS  Google Scholar 

  27. F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tortola and J.W.F. Valle, On the description of nonunitary neutrino mixing, Phys. Rev. D 92 (2015) 053009 [arXiv:1503.08879] [INSPIRE].

    ADS  Google Scholar 

  28. Y.-F. Li and S. Luo, Neutrino oscillation probabilities in matter with direct and indirect unitarity violation in the lepton mixing matrix, Phys. Rev. D 93 (2016) 033008 [arXiv:1508.00052] [INSPIRE].

    ADS  Google Scholar 

  29. S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a neutrino factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [INSPIRE].

    ADS  Google Scholar 

  30. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. R.E. Shrock, New tests for and bounds on, neutrino masses and lepton mixing, Phys. Lett. B 96 (1980) 159 [INSPIRE].

    ADS  Article  Google Scholar 

  32. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  33. R.E. Shrock, General theory of weak processes involving neutrinos. I. Leptonic pseudoscalar-meson decays, with associated tests for, and bounds on, neutrino masses and lepton mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].

  34. R.E. Shrock, General theory of weak processes involving neutrinos. II. Pure leptonic decays, Phys. Rev. D 24 (1981) 1275 [INSPIRE].

  35. P. Langacker and D. London, Mixing between ordinary and exotic fermions, Phys. Rev. D 38 (1988) 886 [INSPIRE].

    ADS  Google Scholar 

  36. S.M. Bilenky and C. Giunti, See-saw type mixing and ν μ ν τ oscillations, Phys. Lett. B 300 (1993) 137 [hep-ph/9211269] [INSPIRE].

  37. E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [INSPIRE].

  38. D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog, Nondecoupling of heavy neutrinos and lepton flavor violation, Nucl. Phys. B 444 (1995) 451 [hep-ph/9503228] [INSPIRE].

  39. C. Biggio, The contribution of fermionic seesaws to the anomalous magnetic moment of leptons, Phys. Lett. B 668 (2008) 378 [arXiv:0806.2558] [INSPIRE].

    ADS  Article  Google Scholar 

  40. R. Alonso, M. Dhen, M.B. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].

    ADS  Article  Google Scholar 

  41. S. Antusch and O. Fischer, Non-unitarity of the leptonic mixing matrix: present bounds and future sensitivities, JHEP 10 (2014) 094 [arXiv:1407.6607] [INSPIRE].

    ADS  Article  Google Scholar 

  42. A. Abada and T. Toma, Electric dipole moments of charged leptons with sterile fermions, JHEP 02 (2016) 174 [arXiv:1511.03265] [INSPIRE].

    ADS  Article  Google Scholar 

  43. A. Abada and T. Toma, Electron electric dipole moment in inverse seesaw models, JHEP 08 (2016) 079 [arXiv:1605.07643] [INSPIRE].

    ADS  Article  Google Scholar 

  44. E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Global constraints on heavy neutrino mixing, JHEP 08 (2016) 033 [arXiv:1605.08774] [INSPIRE].

    ADS  Article  Google Scholar 

  45. D.V. Forero, S. Morisi, M. Tortola and J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  46. Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].

    ADS  Google Scholar 

  47. Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].

  48. MINOS collaboration, P. Adamson et al., Search for sterile neutrinos mixing with muon neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].

  49. NOMAD collaboration, P. Astier et al., Search for ν μ ν e oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].

  50. NOMAD collaboration, P. Astier et al., Final NOMAD results on ν μ ν τ and ν e ν τ oscillations including a new search for ν τ appearance using hadronic τ decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [INSPIRE].

  51. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    ADS  Article  Google Scholar 

  52. O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].

    ADS  Article  Google Scholar 

  53. M. Drewes and B. Garbrecht, Experimental and cosmological constraints on heavy neutrinos, arXiv:1502.00477 [INSPIRE].

  54. S. Parke and M. Ross-Lonergan, Unitarity and the three flavor neutrino mixing matrix, Phys. Rev. D 93 (2016) 113009 [arXiv:1508.05095] [INSPIRE].

    ADS  Google Scholar 

  55. D. Dutta, R. Gandhi, B. Kayser, M. Masud and S. Prakash, Capabilities of long-baseline experiments in the presence of a sterile neutrino, JHEP 11 (2016) 122 [arXiv:1607.02152] [INSPIRE].

    ADS  Article  Google Scholar 

  56. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

  57. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

  58. DUNE collaboration, T. Alion et al., Experiment simulation configurations used in DUNE CDR, arXiv:1606.09550 [INSPIRE].

  59. M. Blennow and E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES, Comput. Phys. Commun. 181 (2010) 227 [arXiv:0903.3985] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  60. M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

    ADS  Article  Google Scholar 

  61. A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].

    ADS  Article  Google Scholar 

  62. O.G. Miranda, M. Tortola and J.W.F. Valle, New ambiguity in probing CP-violation in neutrino oscillations, Phys. Rev. Lett. 117 (2016) 061804 [arXiv:1604.05690] [INSPIRE].

    ADS  Article  Google Scholar 

  63. S.-F. Ge, P. Pasquini, M. Tortola and J.W.F. Valle, Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing, Phys. Rev. D 95 (2017) 033005 [arXiv:1605.01670] [INSPIRE].

    ADS  Google Scholar 

  64. S. Verma and S. Bhardwaj, Probing non-unitary CP violation effects in neutrino oscillation experiments, arXiv:1609.06412 [INSPIRE].

  65. D. Dutta, P. Ghoshal and S. Roy, Effect of non unitarity on neutrino mass hierarchy determination at DUNE, NOνA and T2K, arXiv:1609.07094 [INSPIRE].

  66. S. Geer, Neutrino beams from muon storage rings: characteristics and physics potential, Phys. Rev. D 57 (1998) 6989 [Erratum ibid. D 59 (1999) 039903] [hep-ph/9712290] [INSPIRE].

  67. A. De Rujula, M.B. Gavela and P. Hernández, Neutrino oscillation physics with a neutrino factory, Nucl. Phys. B 547 (1999) 21 [hep-ph/9811390] [INSPIRE].

  68. D. Meloni, T. Ohlsson, W. Winter and H. Zhang, Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory, JHEP 04 (2010) 041 [arXiv:0912.2735] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  69. J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].

    ADS  Google Scholar 

  70. S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Physics reach of DUNE with a light sterile neutrino, JHEP 09 (2016) 016 [arXiv:1603.03759] [INSPIRE].

    ADS  Article  Google Scholar 

  71. S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Octant of θ 23 in danger with a light sterile neutrino, Phys. Rev. Lett. 118 (2017) 031804 [arXiv:1605.04299] [INSPIRE].

    ADS  Article  Google Scholar 

  72. P. Coloma, Non-standard interactions in propagation at the Deep Underground Neutrino Experiment, JHEP 03 (2016) 016 [arXiv:1511.06357] [INSPIRE].

    ADS  Article  Google Scholar 

  73. A. de Gouvêa and K.J. Kelly, Non-standard neutrino interactions at DUNE, Nucl. Phys. B 908 (2016) 318 [arXiv:1511.05562] [INSPIRE].

    ADS  Article  Google Scholar 

  74. M. Blennow, S. Choubey, T. Ohlsson, D. Pramanik and S.K. Raut, A combined study of source, detector and matter non-standard neutrino interactions at DUNE, JHEP 08 (2016) 090 [arXiv:1606.08851] [INSPIRE].

    ADS  Article  Google Scholar 

  75. S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Degeneracy between θ 23 octant and neutrino non-standard interactions at DUNE, Phys. Lett. B 762 (2016) 64 [arXiv:1607.01745] [INSPIRE].

    ADS  Article  Google Scholar 

  76. M. Masud and P. Mehta, Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 053007 [arXiv:1606.05662] [INSPIRE].

    ADS  Google Scholar 

  77. M. Masud and P. Mehta, Nonstandard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 013014 [arXiv:1603.01380] [INSPIRE].

    ADS  Google Scholar 

  78. M. Masud, A. Chatterjee and P. Mehta, Probing CP-violation signal at DUNE in presence of non-standard neutrino interactions, J. Phys. G 43 (2016) 095005 [arXiv:1510.08261] [INSPIRE].

    ADS  Article  Google Scholar 

  79. P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [arXiv:1604.05772] [INSPIRE].

    ADS  Google Scholar 

  80. V. De Romeri, E. Fernandez-Martinez and M. Sorel, Neutrino oscillations at DUNE with improved energy reconstruction, JHEP 09 (2016) 030 [arXiv:1607.00293] [INSPIRE].

    Article  Google Scholar 

  81. KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].

  82. NuTeV collaboration, S. Avvakumov et al., Search for ν μ ν e and \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations at NuTeV, Phys. Rev. Lett. 89 (2002) 011804 [hep-ex/0203018] [INSPIRE].

  83. Daya Bay collaboration, F.P. An et al., Improved search for a light sterile neutrino with the full configuration of the Daya Bay experiment, Phys. Rev. Lett. 117 (2016) 151802 [arXiv:1607.01174] [INSPIRE].

  84. MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].

  85. G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, First constraints on the complete neutrino mixing matrix with a sterile neutrino, Phys. Rev. Lett. 117 (2016) 221801 [arXiv:1607.00011] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Fernandez-Martinez.

Additional information

ArXiv ePrint: 1609.08637

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blennow, M., Coloma, P., Fernandez-Martinez, E. et al. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions. J. High Energ. Phys. 2017, 153 (2017). https://doi.org/10.1007/JHEP04(2017)153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2017)153

Keywords

  • Beyond Standard Model
  • Neutrino Physics