Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Chaos and complexity by design

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 April 2017
  • volume 2017, Article number: 121 (2017)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Chaos and complexity by design
Download PDF
  • Daniel A. Roberts1,2 &
  • Beni Yoshida3 
  • 3084 Accesses

  • 192 Citations

  • 12 Altmetric

  • 1 Mention

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Dupuis, M. Berta, J. Wullschleger and R. Renner, One-shot decoupling, Comm. Math. Phys. 328 (2014) 251 [arXiv:1012.6044].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. W. Brown and O. Fawzi, Decoupling with random quantum circuits, Comm. Math. Phys. 340 (2015) 867.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. . Chamon, A. Hamma and E.R. Mucciolo, Emergent irreversibility and entanglement spectrum statistics, Phys. Rev. Lett. 112 (2014) 240501 [arXiv:1310.2702].

  11. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Nahum, J. Ruhman, S. Vijay and J. Haah, Quantum entanglement growth under random unitary dynamics, arXiv:1608.06950 [INSPIRE].

  13. D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Larkin and Y. Ovchinnikov, Quasiclassical method in the theory of superconductivity, JETP 28 (1969) 1200.

    ADS  Google Scholar 

  15. A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at the Fundamental Physics Prize Symposium, November 10 (2014).

  16. S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Stanford, Many-body chaos at weak coupling, JHEP 10 (2016) 009 [arXiv:1512.07687] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A.L. Fitzpatrick and J. Kaplan, A quantum correction to chaos, JHEP 05 (2016) 070 [arXiv:1601.06164] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Gu and X.-L. Qi, Fractional statistics and the butterfly effect, JHEP 08 (2016) 129 [arXiv:1602.06543] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Caputa, T. Numasawa and A. Veliz-Osorio, Out-of-time-ordered correlators and purity in rational conformal field theories, PTEP 2016 (2016) 113B06 [arXiv:1602.06542] [INSPIRE].

  23. B. Swingle, G. Bentsen, M. Schleier-Smith and P. Hayden, Measuring the scrambling of quantum information, Phys. Rev. A 94 (2016) 040302 [arXiv:1602.06271] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Perlmutter, Bounding the space of holographic CFTs with chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Blake, Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett. 117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D.A. Roberts and B. Swingle, Lieb-Robinson bound and the butterfly effect in quantum field theories, Phys. Rev. Lett. 117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Blake, Universal diffusion in incoherent black holes, Phys. Rev. D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].

    ADS  Google Scholar 

  28. B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Huang, Y.-L. Zhang and X. Chen, Out-of-time-ordered correlator in many-body localized systems, arXiv:1608.01091 [INSPIRE].

  30. R. Fan, P. Zhang, H. Shen and H. Zhai, Out-of-time-order correlation for many-body localization, arXiv:1608.01914 [INSPIRE].

  31. N. Yunger Halpern, Jarzynski-like equality for the out-of-time-ordered correlator, Phys. Rev. A 95 (2017) 012120 [arXiv:1609.00015] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D.P. DiVincenzo, D.W. Leung and B.M. Terhal, Quantum data hiding, IEEE Trans. Inf. Theory 48 (2002) 580.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Emerson, E. Livine and S. Lloyd, Convergence conditions for random quantum circuits, Phys. Rev. A 72 (2005) 060302.

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Ambainis and J. Emerson, Quantum t-designs: t-wise independence in the quantum world, in the proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07), June 13-16, Washington, U.S.A. (2007).

  35. D. Gross, K. Audenaert and J. Eisert, Evenly distributed unitaries: on the structure of unitary designs, J. Math. Phys. 48 (2007) 052104 [quant-ph/0611002]

  36. C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304.

    Article  ADS  Google Scholar 

  37. J. Emerson et al., Pseudo-random unitary operators for quantum information processing, Science 302 (2003) 2098.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random quantum circuits, Phys. Rev. Lett. 104 (2010) 250501.

    Article  ADS  Google Scholar 

  39. A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Comm. Math. Phys. 291 (2009) 257 [arXiv:0802.1919].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. E. Knill et al., Randomized benchmarking of quantum gates, Phys. Rev. A 77 (2008) 012307.

    Article  ADS  Google Scholar 

  41. F.G.S.L. Brandao, A.W. Harrow and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, arXiv:1208.0692.

  42. R. Kueng and D. Gross, Qubit stabilizer states are complex projective 3-designs, arXiv:1510.02767.

  43. Z. Webb, The Clifford group forms a unitary 3-design, arXiv:1510.02769.

  44. R.A. Low., Pseudo-randomness and learning in quantum computation, arXiv:1006.5227.

  45. A.J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys. A 41 (2008) 055308.

    ADS  MathSciNet  MATH  Google Scholar 

  46. H. Zhu, Multiqubit clifford groups are unitary 3-designs, arXiv:1510.02619.

  47. B. Collins and I. Nechita, Random matrix techniques in quantum information theory, J. Math. Phys. 57 (2016) 015215 [arXiv:1509.04689].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Y. Nakata, C. Hirche, M. Koashi and A. Winter, Efficient unitary designs with nearly time-independent Hamiltonian dynamics, arXiv:1609.07021 [INSPIRE].

  49. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

  50. E. Knill, Approximation by quantum circuits, quant-ph/9508006 [INSPIRE].

  51. L. Susskind, The Typical-State Paradox: Diagnosing Horizons with Complexity, Fortsch. Phys. 64 (2016) 84 [arXiv:1507.02287] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. A. Kitaev, Ph/CS 219C: quantum computation, course taught at Caltech, California, U.S.A. (2016).

  53. Y. Gu, Moments of random matrices and weingarten functions, M.Sc. thesis, Queen’s University, Ontario, Canada (2013).

  54. J. Watrous, Theory of quantum information, lecture notes (2015)

  55. B. Collins, Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 2003 (2003) 953.

    Article  MATH  Google Scholar 

  56. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Roy and A.J. Scott, Unitary designs and codes, Des. Codes Cryptogr. 53 (2009) 13.

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  59. A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 Santa Barbara, U.S.A. (2015).

  60. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  Google Scholar 

  61. L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. J.L.F. Barbon and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP 11 (2003) 047 [hep-th/0308063] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. J.L.F. Barbon and E. Rabinovici, Geometry and quantum noise, Fortsch. Phys. 62 (2014) 626 [arXiv:1404.7085] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, quant-ph/0701004.

  65. A.R. Brown, L. Susskind and Y. Zhao, Quantum complexity and negative curvature, Phys. Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].

    ADS  Google Scholar 

  66. S. Chapman, H. Marrochio and R.C. Myers, Complexity of formation in holography, to appear.

  67. L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].

  68. W. Chemissany and T.J. Osborne, Holographic fluctuations and the principle of minimal complexity, JHEP 12 (2016) 055 [arXiv:1605.07768] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. A.R. Brown and L. Susskind, The second law of quantum complexity, arXiv:1701.01107 [INSPIRE].

  70. D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

  71. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 24 [arXiv:1403.5695] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 24 [arXiv:1403.5695] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    ADS  Google Scholar 

  75. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  77. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    ADS  Google Scholar 

  79. B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].

  80. J. Maldacena, Spacetime from entanglement, talk give at KITP, August 20, Santa Barbara, U.S.A. (2013).

  81. A. Almheiri, X. Dong, and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041].

    Article  ADS  MathSciNet  Google Scholar 

  82. M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, U.K. (2000).

    MATH  Google Scholar 

  83. M. Mozrzymas et al., Local random quantum circuits are approximate polynomial-designs: numerical results, J. Phys. A 46 (2013) 305301 [arXiv:1212.2556].

    MathSciNet  MATH  Google Scholar 

  84. A. Brown, Wormholes and complexity, talk given at the Perimeter Institute for Theoretical Physics, August 21, Waterloo, Canada (2015).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, U.S.A.

    Daniel A. Roberts

  2. School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, U.S.A.

    Daniel A. Roberts

  3. Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada

    Beni Yoshida

Authors
  1. Daniel A. Roberts
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Beni Yoshida
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel A. Roberts.

Additional information

ArXiv ePrint: 1610.04903

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, D.A., Yoshida, B. Chaos and complexity by design. J. High Energ. Phys. 2017, 121 (2017). https://doi.org/10.1007/JHEP04(2017)121

Download citation

  • Received: 10 November 2016

  • Revised: 28 January 2017

  • Accepted: 28 March 2017

  • Published: 20 April 2017

  • DOI: https://doi.org/10.1007/JHEP04(2017)121

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Random Systems
  • Holography and condensed matter physics (AdS/CMT)

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature