Skip to main content
Log in

Random Quantum Circuits are Approximate 2-designs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a universal gate set on two qubits, it is well known that applying random gates from the set to random pairs of qubits will eventually yield an approximately Haar-distributed unitary. However, this requires exponential time. We show that random circuits of only polynomial length will approximate the first and second moments of the Haar distribution, thus forming approximate 1- and 2-designs. Previous constructions required longer circuits and worked only for specific gate sets. As a corollary of our main result, we also improve previous bounds on the convergence rate of random walks on the Clifford group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: Quantum Copy-Protection. Talk at QIP, New Delhi, India, December 2007, available at http://www.scottaaronson.com/talks/copy.ppt, 2007

  2. Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: Restructuring quantum information’s family tree. http://arxiv.org/abs/:quant-ph/0606225v1, 2006

  3. Ambainis, A., Emerson, E.: Quantum t-designs: t-wise independence in the quantum world. IEEE Conference on Computational Complexity 2007, http://arxiv.org/abs/:quant-ph/0701126v2, 2007

  4. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private Quantum Channels. FOCS 2000, Washington, DC: IEEE, 2000, pp. 547–553

  5. Ambainis, A., Smith, A.: Small pseudo-random families of matrices: derandomizing approximate quantum encryption. Lecture Notes in Computer Science 3122, Berlin-Heidelberg-NewYork: Springer, 2004, pp. 249–260

  6. Arnold, V.I., Krylov, A.L.: Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex domain. Sov. Math. Dokl. 4(1), 1962

  7. Barenco A., Berthiaume A., Deutsch D., Ekert A., Jozsa R., Macchiavello C.: Stabilization of quantum computations by symmetrization. SIAM J. Comput. 26(5), 1541–1557 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barnum, H.: Information-disturbance tradeoff in quantum measurement on the uniform ensemble and on the mutually unbiased bases. http://arxiv.org/abs/:quant-ph/0205155v1, 2002

  9. Dahlsten O.C.O., Oliveira R., Plenio M.B.: The emergence of typical entanglement in two-party random processes. J. Phys. A Math. Gen. 40, 8081–8108 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary 2-designs: constructions and applications. http://arxiv.org/abs/:quant-ph/0606161v1, 2006

  11. Devetak I., Junge M., King C., Ruskai M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266, 37–63 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Diaconis P., Saloff-Coste L.: Comparison theorems for reversible markov chains. Ann. Appl. Probab. 3(3), 696–730 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Diaconis P., Saloff-Coste L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. DiVincenzo D., Leung D., Terhal B.: Quantum data hiding. Information Theory. IEEE Transactions 48(3), 580–598 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Emerson J., Livine E., Lloyd S.: Convergence conditions for random quantum circuits. Phys. Rev. A 72, 060302 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Goodman R., Wallach N.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Grimmett G., Welsh D.: Probability: An Introduction. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  18. Gross D., Audenaert K., Eisert J.: Evenly distributed unitaries: On the structure of unitary designs. J. Math. Phys. 48, 052104 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hallgren, S., Harrow, A.W.: Superpolynomial speedups based on almost any quantum circuit. In: Proc. 35th Intl. Colloq. on Automate Languages an Programming LCUS 5125, 2, pp. 782–795, 2008

  20. Hayashi A., Hashimoto T., Horibe M.: Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032325 (2006)

    Article  ADS  Google Scholar 

  21. Hayden P., Horodecki M., Yard J., Winter A.: A decoupling approach to the quantum capacity. Open Syst. Inf. Dyn. 15, 7–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hayden P., Preskill J.: Black holes as mirrors: quantum information in random subsystems. JHEP 09, 120 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hoory, S., Brodsky, A.: Simple Permutations Mix Even Better. http://arxiv.org/abs/math/0411098v2[math.CO] 2004

  24. Kitaev A.Yu., Shen A.H., Vyalyi M.N.: Classical and Quantum Computation. RI Amer. Math. Soc., Providence (2002)

    MATH  Google Scholar 

  25. Montenegro R., Tetali P.: Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), 237–354 (2006)

    Article  MathSciNet  Google Scholar 

  26. Oliveira R., Dahlsten O.C.O., Plenio M.B.: Efficient generation of generic entanglement. Phys. Rev. Lett. 98, 130502 (2007)

    Article  ADS  Google Scholar 

  27. Paulsen V.I.: Completely Bounded Maps and Dilations. John Wiley & Sons, Inc., New York (1987)

    Google Scholar 

  28. Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. IEEE Conference on Computational Complexity 2006, 2005, pp. 274–287

  29. Watrous J.: Notes on super-operator norms induced by Schatten norms. Quantum Information and Computation 5(1), 58–68 (2005)

    MathSciNet  Google Scholar 

  30. Znidaric M.: Optimal two-qubit gate for generation of random bipartite entanglement. Phys. Rev. A 76, 012318 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram W. Harrow.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrow, A.W., Low, R.A. Random Quantum Circuits are Approximate 2-designs. Commun. Math. Phys. 291, 257–302 (2009). https://doi.org/10.1007/s00220-009-0873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0873-6

Keywords

Navigation