Advertisement

Superspace higher derivative terms in two dimensions

  • Fotis Farakos
  • Pavel Kočí
  • Rikard von Unge
Open Access
Regular Article - Theoretical Physics

Abstract

We study (2, 2) and (4, 4) supersymmetric theories with superspace higher derivatives in two dimensions. A characteristic feature of these models is that they have several different vacua, some of which break supersymmetry. Depending on the vacuum, the equations of motion describe different propagating degrees of freedom. Various examples are presented which illustrate their generic properties. As a by-product we see that these new vacua give a dynamical way of generating non-linear realizations. In particular, our 2D (4, 4) example is the dimensional reduction of a 4D N = 2 model, and gives a new way for the spontaneous breaking of extended supersymmetry.

Keywords

Supersymmetry Breaking Extended Supersymmetry Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  2. [2]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyper-Kähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    C.M. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C.M. Hull, G. Papadopoulos and B.J. Spence, Gauge symmetries for (p, q) supersymmetric σ-models, Nucl. Phys. B 363 (1991) 593 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    M.T. Grisaru, M. Massar, A. Sevrin and J. Troost, Some aspects of N = (2, 2), D = 2 supersymmetry, Fortsch. Phys. 47 (1999) 301 [hep-th/9801080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Maes and A. Sevrin, A note on N = (2,2) superfields in two dimensions, Phys. Lett. B 642 (2006) 535 [hep-th/0607119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    U. Lindström and M. Roček, Scalar tensor duality and N = 1, N = 2 nonlinear σ-models, Nucl. Phys. B 222 (1983) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S.J. Gates Jr. and W. Siegel, Variant superfield representations, Nucl. Phys. B 187 (1981) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B.B. Deo and S.J. Gates Jr., Comments on nonminimal N = 1 scalar multiplets, Nucl. Phys. B 254 (1985) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.T. Grisaru, A. Van Proeyen and D. Zanon, Quantization of the complex linear superfield, Nucl. Phys. B 502 (1997) 345 [hep-th/9703081] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Penati, A. Refolli, A. Van Proeyen and D. Zanon, The nonminimal scalar multiplet: duality, σ-model, β-function, Nucl. Phys. B 514 (1998) 460 [hep-th/9710166] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    S.J. Gates Jr., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. Penati, A. Refolli, A. Sevrin and D. Zanon, Geometry and β-functions for N = 2 matter models in two-dimensions, Nucl. Phys. B 533 (1998) 593 [hep-th/9803230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Buscher, U. Lindström and M. Roček, New supersymmetric σ models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    F. Farakos, S. Ferrara, A. Kehagias and M. Porrati, Supersymmetry breaking by higher dimension operators, Nucl. Phys. B 879 (2014) 348 [arXiv:1309.1476] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Farakos and R. von Unge, Complex linear effective theory and supersymmetry breaking vacua, Phys. Rev. D 91 (2015) 045024 [arXiv:1403.0935] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    F. Farakos, O. Hulık, P. Kočí and R. von Unge, Non-minimal scalar multiplets, supersymmetry breaking and dualities, JHEP 09 (2015) 177 [arXiv:1507.01885] [INSPIRE].
  20. [20]
    W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity, Nucl. Phys. B 238 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.J. Gates Jr. and W. Siegel, Leftons, rightons, nonlinear σ models and superstrings, Phys. Lett. B 206 (1988) 631 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Sevrin and D.C. Thompson, A note on supersymmetric chiral bosons, JHEP 07 (2013) 086 [arXiv:1305.4848] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Goteman, U. Lindström and M. Roček, Semichiral σ-models with 4D hyper-Kähler geometry, JHEP 01 (2013) 073 [arXiv:1207.4753] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    U. Lindström, Extended supersymmetry of semichiral σ-models in 4D, JHEP 02 (2015) 170 [arXiv:1411.3906] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  29. [29]
    E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    S.M. Kuzenko and S.J. Tyler, Complex linear superfield as a model for Goldstino, JHEP 04 (2011) 057 [arXiv:1102.3042] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci and D. Sorokin, The Goldstino brane, the constrained superfields and matter in N = 1 supergravity, JHEP 11 (2016) 109 [arXiv:1608.05908] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S.M. Kuzenko and I.N. McArthur, Goldstino superfields for spontaneously broken N = 2 supersymmetry, JHEP 06 (2011) 133 [arXiv:1105.3001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    N. Cribiori, G. Dall’Agata and F. Farakos, Interactions of N Goldstini in superspace, Phys. Rev. D 94 (2016) 065019 [arXiv:1607.01277] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Cecotti, S. Ferrara and L. Girardello, Structure of the scalar potential in general N = 1 higher derivative supergravity in four-dimensions, Phys. Lett. B 187 (1987) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Supersymmetric models with higher dimensional operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X,ϕ) and the ghost condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Koehn, J.-L. Lehners and B.A. Ovrut, Higher-derivative chiral superfield actions coupled to N = 1 supergravity, Phys. Rev. D 86 (2012) 085019 [arXiv:1207.3798] [INSPIRE].ADSGoogle Scholar
  39. [39]
    F. Farakos and A. Kehagias, Emerging potentials in higher-derivative gauged chiral models coupled to N = 1 supergravity, JHEP 11 (2012) 077 [arXiv:1207.4767] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E. Dudas and D.M. Ghilencea, Effective operators in SUSY, superfield constraints and searches for a UV completion, JHEP 06 (2015) 124 [arXiv:1503.08319] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Aoki and Y. Yamada, Inflation in supergravity without Kähler potential, Phys. Rev. D 90 (2014) 127701 [arXiv:1409.4183] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Aoki and Y. Yamada, Impacts of supersymmetric higher derivative terms on inflation models in supergravity, JCAP 07 (2015) 020 [arXiv:1504.07023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Nitta and S. Sasaki, Higher derivative corrections to manifestly supersymmetric nonlinear realizations, Phys. Rev. D 90 (2014) 105002 [arXiv:1408.4210] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Ciupke, J. Louis and A. Westphal, Higher-derivative supergravity and moduli stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    S. Bielleman, L.E. Ibáñez, F.G. Pedro, I. Valenzuela and C. Wieck, The DBI action, higher-derivative supergravity and flattening inflaton potentials, JHEP 05 (2016) 095 [arXiv:1602.00699] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Aoki and Y. Yamada, DBI action of real linear superfield in 4D N = 1 conformal supergravity, JHEP 06 (2016) 168 [arXiv:1603.06770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    D. Ciupke, Scalar potential from higher derivative N = 1 superspace, arXiv:1605.00651 [INSPIRE].
  48. [48]
    T. Fujimori, M. Nitta and Y. Yamada, Ghostbusters in higher derivative supersymmetric theories: who is afraid of propagating auxiliary fields?, JHEP 09 (2016) 106 [arXiv:1608.01843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S. Bielleman, L.E. Ibáñez, F.G. Pedro, I. Valenzuela and C. Wieck, Higgs-otic inflation and moduli stabilization, JHEP 02 (2017) 073 [arXiv:1611.07084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Fotis Farakos
    • 1
    • 2
  • Pavel Kočí
    • 3
  • Rikard von Unge
    • 3
  1. 1.Dipartimento di Fisica “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.INFN, Sezione di PadovaPadovaItaly
  3. 3.Institute for Theoretical PhysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations