Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Time evolution of entanglement entropy in quenched holographic superconductors

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 14 April 2015
  • volume 2015, Article number: 66 (2015)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Time evolution of entanglement entropy in quenched holographic superconductors
Download PDF
  • Xiaojian Bai1,
  • Bum-Hoon Lee2,3,
  • Li Li4,
  • Jia-Rui Sun5 &
  • …
  • Hai-Qing Zhang6 
  • 640 Accesses

  • 26 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We investigate the dynamical evolution of entanglement entropy in a holographic superconductor model by quenching the source term of the dual charged scalar operator. By access to the full background geometry, the holographic entanglement entropy is calculated for a strip geometry at the AdS boundary. It is found that the entanglement entropy exhibits a robust non-monotonic behaviour in time, independent of the strength of Gaussian quench and the size of the strip: it first displays a small dip, then grows linearly, and finally saturates. In particular, the linear growth velocity of the entanglement entropy has an upper bound for strip with large width; the equilibrium value of the non-local probe at late time shows a power law scaling behaviour with respect to the quench strength; moreover, the entanglement entropy can uncover the dynamical transition at certain critical quench strength which happens to coincide with the one obtained form the dynamical evolution of scalar order parameter.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  2. P. Calabrese and J.L. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

    MathSciNet  Google Scholar 

  4. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Lewkowycz and J.M. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. Abajo-Arrastia, J. Aparício and E. López, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  12. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  13. A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].

    ADS  Google Scholar 

  15. E. Caceres and A. Kundu, Holographic Thermalization with Chemical Potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. T. Hartman and J.M. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].

    ADS  Google Scholar 

  19. H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].

    Article  ADS  Google Scholar 

  20. Y.-Z. Li, S.-F. Wu, Y.-Q. Wang and G.-H. Yang, Linear growth of entanglement entropy in holographic thermalization captured by horizon interiors and mutual information, JHEP 09 (2013) 057 [arXiv:1306.0210] [INSPIRE].

    Article  ADS  Google Scholar 

  21. H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].

    ADS  Google Scholar 

  22. V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014) 097 [arXiv:1312.6887] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Abajo-Arrastia, E. da Silva, E. López, J. Mas and A. Serantes, Holographic Relaxation of Finite Size Isolated Quantum Systems, JHEP 05 (2014) 126 [arXiv:1403.2632] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP 02 (2015) 017 [arXiv:1410.6201] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Caceres, A. Kundu, J.F. Pedraza and D.-L. Yang, Weak Field Collapse in AdS: Introducing a Charge Density, arXiv:1411.1744 [INSPIRE].

  27. T. Albash and C.V. Johnson, Holographic Studies of Entanglement Entropy in Superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].

    Article  ADS  Google Scholar 

  28. R.-G. Cai, S. He, L. Li and Y.-L. Zhang, Holographic Entanglement Entropy in Insulator/Superconductor Transition, JHEP 07 (2012) 088 [arXiv:1203.6620] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R.-G. Cai, S. He, L. Li and Y.-L. Zhang, Holographic Entanglement Entropy on P-wave Superconductor Phase Transition, JHEP 07 (2012) 027 [arXiv:1204.5962] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R.-G. Cai, S. He, L. Li and L.-F. Li, Entanglement Entropy and Wilson Loop in Stúckelberg Holographic Insulator/Superconductor Model, JHEP 10 (2012) 107 [arXiv:1209.1019] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L.-F. Li, R.-G. Cai, L. Li and C. Shen, Entanglement entropy in a holographic p-wave superconductor model, Nucl. Phys. B 894 (2015) 15 [arXiv:1310.6239] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. X.-M. Kuang, E. Papantonopoulos and B. Wang, Entanglement Entropy as a Probe of the Proximity Effect in Holographic Superconductors, JHEP 05 (2014) 130 [arXiv:1401.5720] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Yao and J. Jing, Holographic entanglement entropy in insulator/superconductor transition with Born-Infeld electrodynamics, JHEP 05 (2014) 058 [arXiv:1401.6505] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. Y. Peng and Q. Pan, Holographic entanglement entropy in general holographic superconductor models, JHEP 06 (2014) 011 [arXiv:1404.1659] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic Superfluids and the Dynamics of Symmetry Breaking, Phys. Rev. Lett. 110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium Condensation Process in a Holographic Superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. X. Gao, A.M. García-García, H.B. Zeng and H.-Q. Zhang, Normal modes and time evolution of a holographic superconductor after a quantum quench, JHEP 06 (2014) 019 [arXiv:1212.1049] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A.M. García-García, H.B. Zeng and H.-Q. Zhang, A thermal quench induces spatial inhomogeneities in a holographic superconductor, JHEP 07 (2014) 096 [arXiv:1308.5398] [INSPIRE].

    Article  ADS  Google Scholar 

  40. X. Bai, B.-H. Lee, M. Park and K. Sunly, Dynamical Condensation in a Holographic Superconductor Model with Anisotropy, JHEP 09 (2014) 054 [arXiv:1405.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Sonner, A. del Campo and W.H. Zurek, Universal far-from-equilibrium Dynamics of a Holographic Superconductor, arXiv:1406.2329 [INSPIRE].

  42. P.M. Chesler, A.M. García-García and H. Liu, Far-from-equilibrium coarsening, defect formation and holography, arXiv:1407.1862 [INSPIRE].

  43. M. Alishahiha, A.F. Astaneh and M.R.M. Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].

    ADS  Google Scholar 

  44. L.N. Trefethen, Spectral methods in MATLAB, Siam, Philadelphia U.S.A. (2000).

    Book  MATH  Google Scholar 

  45. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, United States

    Xiaojian Bai

  2. Center for Quantum Spacetime, Sogang University, Seoul, 121-742, South Korea

    Bum-Hoon Lee

  3. Department of Physics, Sogang University, Seoul, 121-742, South Korea

    Bum-Hoon Lee

  4. Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003, Heraklion, Greece

    Li Li

  5. Department of Physics and Institute of Modern Physics, East China University of Science and Technology, Shanghai, 200237, China

    Jia-Rui Sun

  6. Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE, Utrecht, The Netherlands

    Hai-Qing Zhang

Authors
  1. Xiaojian Bai
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Bum-Hoon Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Li Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jia-Rui Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Hai-Qing Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hai-Qing Zhang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Lee, BH., Li, L. et al. Time evolution of entanglement entropy in quenched holographic superconductors. J. High Energ. Phys. 2015, 66 (2015). https://doi.org/10.1007/JHEP04(2015)066

Download citation

  • Received: 22 January 2015

  • Accepted: 16 March 2015

  • Published: 14 April 2015

  • DOI: https://doi.org/10.1007/JHEP04(2015)066

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)
  • Black Holes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature