Skip to main content
Log in

Rigidly supersymmetric gauge theories on curved superspace

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this note we construct rigidly supersymmetric gauged sigma models and gauge theories on certain Einstein four-manifolds, and discuss constraints on these theories. In work elsewhere, it was recently shown that on some nontrivial Einstein four-manifolds such as AdS4, N = 1 rigidly supersymmetric sigma models are constrained to have target spaces with exact Kähler forms. Similarly, in gauged sigma models and gauge theories, we find that supersymmetry imposes constraints on Fayet-Iliopoulos parameters, which have the effect of enforcing that Kähler forms on quotient spaces be exact. We discuss the ‘background principle’ in this context. We also discuss general aspects of universality classes of gauged sigma models, as encoded by stacks, and also discuss affine bundle structures implicit in these constructions. In an appendix, we discuss how anomalies in four-dimensional gauge theories, such as those which play an important role in our analysis, can be recast in the language of stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, JHEP 12 (2011) 042 [arXiv:1104.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Butter and S.M. Kuzenko, N = 2 supersymmetric σ-models in AdS, Phys. Lett. B 703 (2011) 620 [arXiv:1105.3111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. D. Butter and S.M. Kuzenko, The structure of N = 2 supersymmetric nonlinear σ-models in AdS 4, JHEP 11 (2011) 080 [arXiv:1108.5290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Distler and E. Sharpe, Quantization of Fayet-Iliopoulos Parameters in Supergravity, Phys. Rev. D 83 (2011) 085010 [arXiv:1008.0419] [INSPIRE].

    ADS  Google Scholar 

  6. S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, arXiv:1012.5999 [INSPIRE].

  7. N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity, JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Witten and J. Bagger, Quantization of Newtons Constant in Certain Supergravity Theories, Phys. Lett. B 115 (1982) 202 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. W. Mueck and K. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].

    ADS  Google Scholar 

  12. A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D. Marolf and S.F. Ross, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366 [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP 02 (2009) 043 [arXiv:0811.4504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Rattazzi and M. Redi, Gauge Boson Mass Generation in AdS 4, JHEP 12 (2009) 025 [arXiv:0908.4150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Wess and J. Bagger, Supersymmetry and supergravity, second edition, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  19. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  20. R. Bryant, private communication.

  21. D. Sen, Supersymmetry in the space-time R × S 3, Nucl. Phys. B 284 (1987) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Sen, Extended supersymmetry in the space-time R × S 3, Phys. Rev. D 41 (1990) 667 [INSPIRE].

    ADS  Google Scholar 

  23. M. de León, P. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, The Neatherland (1989).

  24. H. Kraft and F. Kutzschebauch, Equivariant affine line bundles and linearization, Math. Res. Lett. 3 (1996) 619.

    MathSciNet  MATH  Google Scholar 

  25. D.Z. Freedman and B. Körs, Kähler anomalies in Supergravity and flux vacua, JHEP 11 (2006) 067 [hep-th/0509217] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. Elvang, D.Z. Freedman and B. Körs, Anomaly cancellation in supergravity with Fayet-Iliopoulos couplings, JHEP 11 (2006) 068 [hep-th/0606012] [INSPIRE].

    Article  ADS  Google Scholar 

  27. U. Schreiber, Differential cohomology in a cohesive-topos, Habilitation, Hamburg Germany (2011).

    Google Scholar 

  28. S.H. Katz, T. Pantev and E. Sharpe, D branes, orbifolds and ext groups, Nucl. Phys. B 673 (2003) 263 [hep-th/0212218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Pantev and E. Sharpe, Notes on gauging noneffective group actions, hep-th/0502027 [INSPIRE].

  30. T. Pantev and E. Sharpe, String compactifications on Calabi-Yau stacks, Nucl. Phys. B 733 (2006) 233 [hep-th/0502044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Pantev and E. Sharpe, GLSMs for Gerbes (and other toric stacks), Adv. Theor. Math. Phys. 10 (2006) 77 [hep-th/0502053] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  32. S. Hellerman, A. Henriques, T. Pantev, E. Sharpe and M. Ando, Cluster decomposition, T-duality and gerby CFTs, Adv. Theor. Math. Phys. 11 (2007) 751 [hep-th/0606034] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  33. A. Caldararu, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, Non-birational twisted derived equivalences in abelian GLSMs, Commun. Math. Phys. 294 (2010) 605 [arXiv:0709.3855] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. L. Anderson, B. Ovrut, T. Pantev and E. Sharpe, Heterotic strings on gerbes, to appear.

  35. R.L. Karp, On the C n / Z m fractional branes, J. Math. Phys. 50 (2009) 022304 [hep-th/0602165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. C.P. Herzog and R.L. Karp, On the geometry of quiver gauge theories (Stacking exceptional collections), hep-th/0605177 [INSPIRE].

  37. E. Sharpe, Derived categories and stacks in physics, hep-th/0608056 [INSPIRE].

  38. E. Sharpe, Landau-Ginzburg models, gerbes, and Kuznetsovs homological projective duality, to appear in the proceedings of Topology, C * algebras, string duality, Texas Christian University, May 18-22 (2009).

  39. E. Sharpe, GLSMs, Gerbes and Kuznetsovs Homological Projective Duality, arXiv:1004.5388 [INSPIRE].

  40. W.-m. Chen and Y.-b. Ruan, A New cohomology theory for orbifold, Commun. Math. Phys. 248 (2004) 1 [math/0004129] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. D. Abramovich, T. Graber and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, math.AG/0603151.

  42. T. Coates, A. Corti, Y.-P. Lee and H.-H. Tseng, The Quantum Orbifold Cohomology of Weighted Projective Spaces, math.AG/0608481.

  43. E. Mann, Orbifold quantum cohomology of weighted projective spaces, math.AG/0610965.

  44. E. Andreini, Y. Jiang and H.-H. Tseng, On Gromov-Witten theory of root gerbes, arXiv:0812.4477.

  45. E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of product stacks, arXiv:0905.2258.

  46. E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of root gerbes I: structure of genus $0$ moduli spaces, arXiv:0907.2087.

  47. E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of banded gerbes over schemes, arXiv:1101.5996.

  48. H.-H. Tseng, On degree zero elliptic orbifold Gromov-Witten invariants, arXiv:0912.3580.

  49. A. Gholampour and H.-H. Tseng, On Donaldson-Thomas invariants of threefold stacks and gerbes, arXiv:1001.0435.

  50. X. Tang and H.-H. Tseng, Duality theorems of etale gerbes on orbifolds, arXiv:1004.1376 [INSPIRE].

  51. A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, hep-th/0604151 [INSPIRE].

  52. E. Witten, Mirror Symmetry, Hitchins Equations, And Langlands Duality, arXiv:0802.0999 [INSPIRE].

  53. R. Donagi and T. Pantev, Langlands duality for Hitchin systems, math.AG/0604617 [INSPIRE].

  54. P. Pouliot, Chiral duals of nonchiral SUSY gauge theories, Phys. Lett. B 359 (1995) 108 [hep-th/9507018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. P. Pouliot and M. Strassler, A Chiral SU(N) gauge theory and its nonchiral spin(8) dual, Phys. Lett. B 370 (1996) 76 [hep-th/9510228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. M.J. Strassler, Duality, phases, spinors and monopoles in SO(N) and spin(N) gauge theories, JHEP 09 (1998) 017 [hep-th/9709081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. M.J. Strassler, On phases of gauge theories and the role of nonBPS solitons in field theory, hep-th/9808073 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Jia.

Additional information

ArXiv ePrint: 1109.5421

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, B., Sharpe, E. Rigidly supersymmetric gauge theories on curved superspace. J. High Energ. Phys. 2012, 139 (2012). https://doi.org/10.1007/JHEP04(2012)139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)139

Keywords

Navigation