Skip to main content
Log in

Magnetic response in the holographic insulator/superconductor transition

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the magnetic response of holographic superconductors exhibiting an insulating ‘normal’ phase. These materials can be realized as a CFT compactified on a circle, which is dual to the AdS Soliton geometry. We study the response under i) magnetic fields and ii) a Wilson line on the circle. Magnetic fields lead to formation of vortices and allows one to infer that the superconductor is of type II. The response to a Wilson line is in the form of Aharonov-Bohm-like effects. These are suppressed in the holographic conductor/superconductor transition but, instead, they are unsuppressed for the insulator case. Holography, thus, predicts that generically insulators display stronger Aharonov-Bohm effects than conductors. In the fluid-mechanical limit the AdS Soliton is interpreted as a supersolid. Our results imply that supersolids display unsuppressed Aharonov-Bohm (or ‘Sagnac’) effects — stronger than in superfluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P.A. Lee, N. Nagaosa and X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78 (2006) 17 [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

    Article  ADS  Google Scholar 

  4. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. V. Juričić, I.F. Herbut and Z. Tesanović, Restoration of the Magnetic hc/e-Periodicity in Unconventional Superconductors, Phys. Rev. Lett. 100 (2008) 187006.

    Article  ADS  Google Scholar 

  7. V. Vakaryuk, Universal Mechanism for Breaking the hc/2e Periodicity of Flux-Induced Oscillations in Small Superconducting Rings, Phys. Rev. Lett. 101 (2008) 167002.

    Article  ADS  Google Scholar 

  8. F. Loder et al., Magnetic flux periodicity of h/e in superconducting loops, Nat. Phys. 4 (2008) 112.

    Article  Google Scholar 

  9. T.C. Wei and P.M. Goldbart, Emergence of h/e-period oscillations in the critical temperature of small superconducting rings threaded by magnetic flux, Phys. Rev. B 77 (2008) 224512.

    ADS  Google Scholar 

  10. Y.S. Barash, Low-Energy Subgap States and the Magnetic Flux Periodicity in d-Wave Superconducting Rings, Phys. Rev. Lett. 100 (2008) 177003.

    Article  ADS  Google Scholar 

  11. M. Buttiker, Y. Imry and R. Landauer, Josephson Behavior in Small Normal One-Dimensional Rings, Phys. Lett. A 96 (1983) 365.

    ADS  Google Scholar 

  12. R. Landauer and M. Buttiker, Resistance of Small Metallic Loops, Phys. Rev. Lett. 54 (1985) 18.

    Article  Google Scholar 

  13. L. Levy, G. Dolan, J. Dunsmuir and H. Bouchiat, Magnetization of mesoscopic copper rings: Evidence for persistent currents, Phys. Rev. Lett. 64 (1990) 2074 [INSPIRE].

    Article  ADS  Google Scholar 

  14. V. Chandrasekhar, R.A. Webb , M. Brady, M.B. Ketchen, W.J. Gallagher and A. Kelinsasser, Magnetic Response of a Single, Isolated Gold Loop, Phys. Rev. Lett. 67 (1991) 3578.

    Article  ADS  Google Scholar 

  15. D. Mailly, C. Chapelier and A. Benoit, Experimental Observation of Persistent Currents in a GaAs-AlGaAs Single Loop, Phys. Rev. Lett. 70 (1993) 2020.

    Article  ADS  Google Scholar 

  16. H. Bluhm, N.C. Koshnick, J.A. Bert, M.E. Huber and K.A. Moler, Persistent Currents in Normal Metal Rings, Phys. Rev. Lett. 102 (2009) 136802.

    Article  ADS  Google Scholar 

  17. R.A. Webb, S. Washburn, C.P. Umbach and R.B. Laibowitz, Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings, Phys. Rev. Lett. 54 (1985) 2696.

    Article  ADS  Google Scholar 

  18. M. Montull, O. Pujolàs, A. Salvio and P.J. Silva, Flux Periodicities and Quantum Hair on Holographic Superconductors, Phys. Rev. Lett. 107 (2011) 181601 [arXiv:1105.5392] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [INSPIRE].

    ADS  Google Scholar 

  22. K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Albash and C.V. Johnson, Phases of Holographic Superconductors in an External Magnetic Field, arXiv:0906.0519 [INSPIRE].

  25. T. Albash and C.V. Johnson, Vortex and Droplet Engineering in Holographic Superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795] [INSPIRE].

    ADS  Google Scholar 

  26. M. Montull, A. Pomarol and P.J. Silva, The Holographic Superconductor Vortex, Phys. Rev. Lett. 103 (2009) 091601 [arXiv:0906.2396] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. V. Keranen, E. Keski-Vakkuri, S. Nowling and K. Yogendran, Inhomogeneous Structures in Holographic Superfluids: II. Vortices, Phys. Rev. D 81 (2010) 126012 [arXiv:0912.4280] [INSPIRE].

    ADS  Google Scholar 

  28. O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Weinberg, Superconductivity for particular theorists, Prog. Theor. Phys. Suppl. 86 (1986) 43 [INSPIRE].

    Article  ADS  Google Scholar 

  30. Y. Hosotani, Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking, Annals Phys. 190 (1989) 233 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. G. Dvali, Black holes with quantum massive spin-2 hair, Phys. Rev. D 74 (2006) 044013 [hep-th/0605295] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A.F. Andreev and I.M. Lifshitz, Quantum theory of Crystal Defects, Sov. Phys. JETP 29 (1969) 1107.

    ADS  Google Scholar 

  33. E. Kim and M.H.W. Chan, Probable observation of a supersolid helium phase, Nature 427 (2004) 225.

    Article  ADS  Google Scholar 

  34. E. Kim and M.H.W. Chan, Observation of Superflow in Solid Helium, Science 305 (2004) 1941.

    Article  ADS  Google Scholar 

  35. D. Son, Effective Lagrangian and topological interactions in supersolids, Phys. Rev. Lett. 94 (2005) 175301 [cond-mat/0501658] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. During, C. Josserand, Y. Pomeau and S. Rica, Theory of real supersolids, arXiv:1110.1323.

  37. HPQCD collaboration, A. Gray et al., The B meson decay constant from unquenched lattice QCD, Phys. Rev. Lett. 95 (2005) 212001 [hep-lat/0507015] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Anandan, Gravitational and Inertial Effects in Quantum Fluids, Phys. Rev. Lett. 47 (1981) 7.

    Article  Google Scholar 

  39. Y. Sato and R. E. Packard, Superfluid helium quantum interference devices: physics and applications, Rep. Prog. Phys. 75 (2012) 016401.

    Article  ADS  Google Scholar 

  40. G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

    ADS  Google Scholar 

  41. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. L.G. Yaffe, Large-N Limits as Classical Mechanics, Rev. Mod. Phys. 54 (1982) 407 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. See http://www.comsol.com/.

  44. E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. R.-G. Cai, L. Li, H.-Q. Zhang and Y.-L. Zhang, Magnetic Field Effect on the Phase Transition in AdS Soliton Spacetime, Phys. Rev. D 84 (2011) 126008 [arXiv:1109.5885] [INSPIRE].

    ADS  Google Scholar 

  46. W.H. Kleiner, L.M. Roth and S.H. Autler, Bulk Solution of Ginzburg-Landau Equations for Type II Superconductors: Upper Critical Field Region, Phys. Rev. A 133 (1964) 1226.

    Article  ADS  Google Scholar 

  47. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].

    ADS  Google Scholar 

  48. G.T. Horowitz and B. Way, Complete Phase Diagrams for a Holographic Superconductor/Insulator System, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Y. Brihaye and B. Hartmann, Holographic superfluid/fluid/insulator phase transitions in 2+1 dimensions, Phys. Rev. D 83 (2011) 126008 [arXiv:1101.5708] [INSPIRE].

    ADS  Google Scholar 

  50. G.T. Horowitz, J.E. Santos and B. Way, A Holographic Josephson Junction, Phys. Rev. Lett. 106 (2011) 221601 [arXiv:1101.3326] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S.S. Gubser and S.S. Pufu, The Gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [INSPIRE].

    Article  Google Scholar 

  53. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].

    ADS  Google Scholar 

  54. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Salvio.

Additional information

ArXiv ePrint: 1202.0006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montull, M., Pujolàs, O., Salvio, A. et al. Magnetic response in the holographic insulator/superconductor transition. J. High Energ. Phys. 2012, 135 (2012). https://doi.org/10.1007/JHEP04(2012)135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)135

Keywords

Navigation