Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos

  • M. BustamanteEmail author
  • A. M. Gago
  • C. Peña-Garay
Open Access


We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production ϕ0 e : ϕ0 μ: ϕ0 τ = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, ϕμ, and for the flavour ratios at Earth, R = ϕμ e and S = ϕτμ. CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of ϕμ, R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10−29 − 10−27 GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.


Beyond Standard Model Neutrino Physics Discrete and Finite Symmetries 


  1. [1]
    R. Davis, Jr., D.S. Harmer and K.C. Hoffman, Search for neutrinos from the sun, Phys. Rev. Lett. 20 (1968) 1205 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].ADSGoogle Scholar
  3. [3]
    The Borexino collaboration, C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    MACRO collaboration, M. Ambrosio et al., Measurements of atmospheric muon neutrino oscillations, global analysis of the data collected with MACRO detector, Eur. Phys. J. C 36 (2004) 323 [SPIRES].ADSGoogle Scholar
  6. [6]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: Evidence for reactor anti- neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].ADSGoogle Scholar
  8. [8]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    C.W. Walter, Experimental Neutrino Physics, arXiv:0810.3937 [SPIRES].
  10. [10]
    G.L. Fogli, E. Lisi, A. Marrone and G. Scioscia, Testing violations of special and general relativity through the energy dependence of νμ ↔ ντ oscillations in the Super-Kamiokande atmospheric neutrino experiment, Phys. Rev. D 60 (1999) 053006 [hep-ph/9904248] [SPIRES].ADSGoogle Scholar
  11. [11]
    N.E. Mavromatos, Neutrinos and the phenomenology of CPT violation, hep-ph/0402005 [SPIRES].
  12. [12]
    N.E. Mavromatos, CPT Violation and Decoherence in Quantum Gravity, J. Phys. Conf. Ser. 171 (2009) 012007 [arXiv:0904.0606] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    D. Colladay and V.A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [SPIRES].ADSGoogle Scholar
  14. [14]
    V.A. Kostelecky and M. Mewes, Lorentz and CPT violation in the neutrino sector, Phys. Rev. D 70 (2004) 031902 [hep-ph/0308300] [SPIRES].ADSGoogle Scholar
  15. [15]
    V. De Sabbata and M. Gasperini, Neutrino Oscillations In The Presence Of Torsion, Nuovo Cim. A 65 (1981) 479 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Bustamante, A.M. Gago and C. Pena-Garay, Extreme scenarios of new physics in the UHE astrophysical neutrino flavour ratios, J. Phys. Conf. Ser. 171 (2009) 012048 [arXiv:0906.5329] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    ALEPH collaboration, D. Decamp et al., Determination of the Number of Light Neutrino Species, Phys. Lett. B 231 (1989) 519 [SPIRES].ADSGoogle Scholar
  18. [18]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  19. [19]
    B. Kayser, Neutrino Mass, Mixing and Flavor Change, arXiv:0804.1497 [SPIRES].
  20. [20]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. Dighe and S. Ray, CPT violation in long baseline neutrino experiments: a three flavor analysis, Phys. Rev. D 78 (2008) 036002 [arXiv:0802.0121] [SPIRES].ADSGoogle Scholar
  22. [22]
    J.L. Bazo, M. Bustamante, A.M. Gago and O.G. Miranda, High energy astrophysical neutrino flux and modified dispersion relations, Int. J. Mod. Phys. A 24 (2009) 5819 [arXiv:0907.1979] [SPIRES].ADSGoogle Scholar
  23. [23]
    G. Barenboim and C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D 67 (2003) 073024 [hep-ph/0301220] [SPIRES].ADSGoogle Scholar
  24. [24]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Measuring flavor ratios of high-energy astrophysical neutrinos, Phys. Rev. D 68 (2003) 093005 [hep-ph/0307025] [SPIRES].ADSGoogle Scholar
  25. [25]
    A. Esmaili and Y. Farzan, An Analysis of Cosmic Neutrinos: Flavor Composition at Source and Neutrino Mixing Parameters, Nucl. Phys. B 821 (2009) 197 [arXiv:0905.0259] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    H. Athar, C.S. Kim and J. Lee, The intrinsic and oscillated astrophysical neutrino flavor ratios, Mod. Phys. Lett. A 21 (2006) 1049 [hep-ph/0505017] [SPIRES].ADSGoogle Scholar
  27. [27]
    P. Lipari, M. Lusignoli and D. Meloni, Flavor Composition and Energy Spectrum of Astrophysical Neutrinos, Phys. Rev. D 75 (2007) 123005 [arXiv:0704.0718] [SPIRES].ADSGoogle Scholar
  28. [28]
    K.-C. Lai, G.-L. Lin and T.C. Liu, Determination of the Neutrino Flavor Ratio at the Astrophysical Source, Phys. Rev. D 80 (2009) 103005 [arXiv:0905.4003] [SPIRES].ADSGoogle Scholar
  29. [29]
    Z.-Z. Xing and S. Zhou, Towards determination of the initial flavor composition of ultrahigh-energy neutrino fluxes with neutrino telescopes, Phys. Rev. D 74 (2006) 013010 [astro-ph/0603781] [SPIRES].ADSGoogle Scholar
  30. [30]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, CPT odd resonances in neutrino oscillations, Phys. Rev. Lett. 85 (2000) 5055 [hep-ph/0005197] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    J.P. Rachen and P. Meszaros, Photohadronic neutrinos from transients in astrophysical sources, Phys. Rev. D 58 (1998) 123005 [astro-ph/9802280] [SPIRES].ADSGoogle Scholar
  32. [32]
    T. Kashti and E. Waxman, Flavoring Astrophysical Neutrinos: Flavor Ratios Depend on Energy, Phys. Rev. Lett. 95 (2005) 181101 [astro-ph/0507599] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    Z.-z. Xing, Neutrino telescopes as a probe of broken mu tau symmetry, Phys. Rev. D 74 (2006) 013009 [hep-ph/0605219] [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Maltoni and W. Winter, Testing neutrino oscillations plus decay with neutrino telescopes, JHEP 07 (2008) 064 [arXiv:0803.2050] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Decay of high-energy astrophysical neutrinos, Phys. Rev. Lett. 90 (2003) 181301 [hep-ph/0211305] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J.F. Beacom and N.F. Bell, Do solar neutrinos decay?, Phys. Rev. D 65 (2002) 113009 [hep-ph/0204111] [SPIRES].ADSGoogle Scholar
  37. [37]
    A. Mirizzi, D. Montanino and P.D. Serpico, Revisiting cosmological bounds on radiative neutrino lifetime, Phys. Rev. D 76 (2007) 053007 [arXiv:0705.4667] [SPIRES].ADSGoogle Scholar
  38. [38]
    M. Blennow and D. Meloni, Non-standard interaction effects on astrophysical neutrino fluxes, Phys. Rev. D 80 (2009) 065009 [arXiv:0901.2110] [SPIRES].ADSGoogle Scholar
  39. [39]
    S. Ando, M. Kamionkowski and I. Mocioiu, Neutrino Oscillations, Lorentz/CPT Violation and Dark Energy, Phys. Rev. D 80 (2009) 123522 [arXiv:0910.4391] [SPIRES].ADSGoogle Scholar
  40. [40]
    Z.-z. Xing and S. Zhou, Cosmic Neutrino Flavor Democracy and Unitarity Violation at Neutrino Telescopes, Phys. Lett. B 666 (2008) 166 [arXiv:0804.3512] [SPIRES].ADSGoogle Scholar
  41. [41]
    T. DeYoung, Neutrino Astronomy with IceCube, Mod. Phys. Lett. A 24 (2009) 1543 [arXiv:0906.4530] [SPIRES].ADSGoogle Scholar
  42. [42]
    F. Halzen, IceCube: The Rationale for Kilometer-Scale Neutrino Detectors, arXiv:0910.0436 [SPIRES].
  43. [43]
    L.A. Anchordoqui et al., Probing Planck scale physics with IceCube, Phys. Rev. D 72 (2005) 065019 [hep-ph/0506168] [SPIRES].ADSGoogle Scholar
  44. [44]
    R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Neutrino interactions at ultrahigh-energies, Phys. Rev. D 58 (1998) 093009 [hep-ph/9807264] [SPIRES].ADSGoogle Scholar
  45. [45]
    R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 (1996) 81 [hep-ph/9512364] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    E. Waxman, Astrophysical sources of high energy neutrinos, Nucl. Phys. Proc. Suppl. 118 (2003) 353 [astro-ph/0211358] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    J.K. Becker and P.L. Biermann, Neutrinos from active black holes, sources of ultra high energy cosmic rays, Astropart. Phys. 31 (2009) 138 [arXiv:0805.1498] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    H.B.J. Koers and P. Tinyakov, Relation between the neutrino flux from Centaurus A and the associated diffuse neutrino flux, Phys. Rev. D 78 (2008) 083009 [arXiv:0802.2403] [SPIRES].ADSGoogle Scholar
  49. [49]
    IceCube collaboration, A. Achterberg et al., Multi-year search for a diffuse flux of muon neutrinos with AMANDA-II, Phys. Rev. D 76 (2007) 042008 [arXiv:0705.1315] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Sección Física, Departamento de CienciasPontificia Universidad Católica del PerúLimaPeru
  2. 2.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.
  3. 3.Instituto de Física Corpuscular (IFIC)Centro Mixto CSIC-UVEG Edificio Investigación PaternaValenciaSpain

Personalised recommendations