Momentum analyticity of the holographic electric polarizability in 2 + 1 dimensions

Abstract

The static electric polarization of a holographic field theory dual to the Einstein-Maxwell theory in the background of AdS 4 with a Reissner-Nordström (AdS-RN) black hole is investigated. We prove that the holographic polarization is a meromorphic functions in complex momentum plane and locate analytically the asymptotic distribution of the poles along two straight lines parallel to the imaginary axis for a large momentum magnitude. The results are compared with the numerical result on Friedel-like poles of the same holographic model reported in the literature and with the momentum singularities of the one-loop polarization in weak-coupling spinor QED3 and scalar QED3 with the similarities and differences discussed.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  3. [3]

    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  6. [6]

    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    L. Yin, D.-F. Hou and H.-c. Ren, Ginzburg-Landau theory of a holographic superconductor, Phys. Rev. D 91 (2015) 026003 [arXiv:1311.3847] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    L. Yin, H.-c. Ren, T.K. Lee and D.-F. Hou, Momentum Analyticity of Transverse Polarization Tensor in the Normal Phase of a Holographic Superconductor, JHEP 08 (2016) 116 [arXiv:1605.07547] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    W. Kohn and J.M. Luttinger, New Mechanism for Superconductivity, Phys. Rev. Lett. 15 (1965) 524 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    M. Blake, A. Donos and D. Tong, Holographic Charge Oscillations, JHEP 04 (2015) 019 [arXiv:1412.2003] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. [17]

    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

  19. [19]

    D.-F. Hou, J.-R. Li, H. Liu and H.-c. Ren, The Momentum analyticity of two-point correlators from perturbation theory and AdS/CFT, JHEP 07 (2010) 042 [arXiv:1003.5462] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    H. Kodama and A. Ishibashi, A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701 [hep-th/0305147] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. [22]

    M. Edalati, J.I. Jottar and R.G. Leigh, Shear Modes, Criticality and Extremal Black Holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    E.T. Whittaker and G.N. Watson, A course of modern analysis 1, chapter 3, Cambridge Univityers Press (1952).

  24. [24]

    W.F. Osgood, Note on the Functions Defined by Infinite Series Whose Terms Are Analytic Functions of a Complex Variable; with Corresponding Theorems for Definite Integrals, Ann. Math. 3 (1901) 25.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Holographic Non-Fermi Liquid in a Background Magnetic Field, Phys. Rev. D 82 (2010) 044036 [arXiv:0908.1436] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    M. Cubrovic, J. Zaanen and K. Schalm, Constructing the AdS Dual of a Fermi Liquid: AdS Black Holes with Dirac Hair, JHEP 10 (2011) 017 [arXiv:1012.5681] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Yin.

Additional information

ArXiv ePrint: 1612.06978

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Ren, Hc., Lee, TK. et al. Momentum analyticity of the holographic electric polarizability in 2 + 1 dimensions. J. High Energ. Phys. 2017, 126 (2017). https://doi.org/10.1007/JHEP04(2017)126

Download citation

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Holography and condensed matter physics (AdS/CMT)