Abstract
We test the gauge/gravity duality between the matrix model and type IIA string theory at low temperatures with unprecedented accuracy. To this end, we perform lattice Monte Carlo simulations of the Berenstein-Maldacena-Nastase (BMN) matrix model, which is the one-parameter deformation of the Banks-Fischler-Shenker-Susskind (BFSS) matrix model, taking both the large N and continuum limits. We leverage the fact that sufficiently small flux parameters in the BMN matrix model have a negligible impact on the energy of the system while stabilizing the flat directions so that simulations at smaller N than in the BFSS matrix model are possible. Hence, we can perform a precision measurement of the large N continuum energy at the lowest temperatures to date. The energy is in perfect agreement with supergravity predictions including estimations of α′-corrections from previous simulations. At the lowest temperature where we can simulate efficiently (T = 0.25λ1/3, where λ is the ’t Hooft coupling), the difference in energy to the pure supergravity prediction is less than 10%. Furthermore, we can extract the coefficient of the 1/N4 corrections at a fixed temperature with good accuracy, which was previously unknown.
References
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].
N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].
MCSMC collaboration, Confinement/deconfinement transition in the D0-brane matrix model — A signature of M-theory?, JHEP 05 (2022) 096 [arXiv:2110.01312] [INSPIRE].
K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].
S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].
M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].
M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 181602 [arXiv:0811.2081] [INSPIRE].
M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].
D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].
V.G. Filev and D. O’Connor, The BFSS model on the lattice, JHEP 05 (2016) 167 [arXiv:1506.01366] [INSPIRE].
E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D 94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].
E. Rinaldi et al., Toward Holographic Reconstruction of Bulk Geometry from Lattice Simulations, JHEP 02 (2018) 042 [arXiv:1709.01932] [INSPIRE].
S. Catterall, A. Joseph and T. Wiseman, Thermal phases of D1-branes on a circle from lattice super Yang-Mills, JHEP 12 (2010) 022 [arXiv:1008.4964] [INSPIRE].
S. Catterall, R.G. Jha, D. Schaich and T. Wiseman, Testing holography using lattice super-Yang-Mills theory on a 2-torus, Phys. Rev. D 97 (2018) 086020 [arXiv:1709.07025] [INSPIRE].
S. Catterall et al., Three-dimensional super-Yang-Mills theory on the lattice and dual black branes, Phys. Rev. D 102 (2020) 106009 [arXiv:2010.00026] [INSPIRE].
D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].
M.S. Costa, L. Greenspan, J. Penedones and J. Santos, Thermodynamics of the BMN matrix model at strong coupling, JHEP 03 (2015) 069 [arXiv:1411.5541] [INSPIRE].
N.S. Dhindsa et al., Non-perturbative phase structure of the bosonic BMN matrix model, JHEP 05 (2022) 169 [arXiv:2201.08791] [INSPIRE].
D. Schaich, R.G. Jha and A. Joseph, Thermal phase structure of dimensionally reduced super-Yang-Mills, PoS LATTICE2021 (2022) 187 [arXiv:2201.03097] [INSPIRE].
S. Pateloudis et al., Nonperturbative test of the Maldacena-Milekhin conjecture for the BMN matrix model, JHEP 08 (2022) 178 [arXiv:2205.06098] [INSPIRE].
Y. Hyakutake, Quantum near-horizon geometry of a black 0-brane, PTEP 2014 (2014) 033B04 [arXiv:1311.7526] [INSPIRE].
M. Hanada, J. Nishimura and S. Takeuchi, Non-lattice simulation for supersymmetric gauge theories in one dimension, Phys. Rev. Lett. 99 (2007) 161602 [arXiv:0706.1647] [INSPIRE].
S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP 12 (2007) 104 [arXiv:0706.3518] [INSPIRE].
M. Hanada, Bulk geometry in gauge/gravity duality and color degrees of freedom, Phys. Rev. D 103 (2021) 106007 [arXiv:2102.08982] [INSPIRE].
I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].
Y. Hyakutake, Quantum M-wave and Black 0-brane, JHEP 09 (2014) 075 [arXiv:1407.6023] [INSPIRE].
S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP 04 (2010) 077 [arXiv:0909.4947] [INSPIRE].
E. Berkowitz, M. Hanada and J. Maltz, Chaos in Matrix Models and Black Hole Evaporation, Phys. Rev. D 94 (2016) 126009 [arXiv:1602.01473] [INSPIRE].
H. Watanabe et al., Partial deconfinement at strong coupling on the lattice, JHEP 02 (2021) 004 [arXiv:2005.04103] [INSPIRE].
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2210.04881
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
The Monte Carlo String/M-theory (MCSMC) collaboration., Pateloudis, S., Bergner, G. et al. Precision test of gauge/gravity duality in D0-brane matrix model at low temperature. J. High Energ. Phys. 2023, 71 (2023). https://doi.org/10.1007/JHEP03(2023)071
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2023)071
Keywords
- Black Holes in String Theory
- M(atrix) Theories
- Matrix Models
- Nonperturbative Effects