Abstract
We use holography to study the dynamics of a strongly-coupled gauge theory in four-dimensional de Sitter space with Hubble rate H. The gauge theory is non-conformal with a characteristic mass scale M. We solve Einstein’s equations numerically and determine the time evolution of homogeneous gauge theory states. If their initial energy density is high compared with H4 then the early-time evolution is well described by viscous hydrodynamics with a non-zero bulk viscosity. At late times the dynamics is always far from equilibrium. The asymptotic late-time state preserves the full de Sitter symmetry group and its dual geometry is a domain-wall in AdS5. The approach to this state is characterised by an emergent relation of the form \( \mathcal{P} \) = w ℰ that is different from the equilibrium equation of state in flat space. The constant w does not depend on the initial conditions but only on H/M and is negative if the ratio H/M is close to unity. The event and the apparent horizons of the late-time solution do not coincide with one another, reflecting its non-equilibrium nature. In between them lies an “entanglement horizon” that cannot be penetrated by extremal surfaces anchored at the boundary, which we use to compute the entanglement entropy of boundary regions. If the entangling region equals the observable universe then the extremal surface coincides with a bulk cosmological horizon that just touches the event horizon, while for larger regions the extremal surface probes behind the event horizon.
References
J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge, U.K. (2014) [arXiv:1101.0618] [INSPIRE].
W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture, and the big questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
M. P. Heller, R. A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].
P. M. Chesler and L. G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].
J. Casalderrey-Solana, M. P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].
Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, The order of the quantum chromodynamics transition predicted by the Standard Model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].
P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].
C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
G. D. Kribs and E. T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].
S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].
P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].
K. Koyama and J. Soda, Strongly coupled CFT in FRW universe from AdS/CFT correspondence, JHEP 05 (2001) 027 [hep-th/0101164] [INSPIRE].
D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs, Class. Quant. Grav. 28 (2011) 105015 [arXiv:1007.3996] [INSPIRE].
K. Ghoroku and A. Nakamura, Holographic Friedmann equation and N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 87 (2013) 063507 [arXiv:1212.2304] [INSPIRE].
A. Buchel, M. P. Heller and J. Noronha, Entropy production, hydrodynamics, and resurgence in the primordial quark-gluon plasma from holography, Phys. Rev. D 94 (2016) 106011 [arXiv:1603.05344] [INSPIRE].
A. Buchel, Ringing in de Sitter spacetime, Nucl. Phys. B 928 (2018) 307 [arXiv:1707.01030] [INSPIRE].
A. Buchel and A. Karapetyan, De Sitter vacua of strongly interacting QFT, JHEP 03 (2017) 114 [arXiv:1702.01320] [INSPIRE].
A. Buchel, Entanglement entropy of N = 2∗ de Sitter vacuum, Nucl. Phys. B 948 (2019) 114769 [arXiv:1904.09968] [INSPIRE].
A. Buchel, χSB of cascading gauge theory in de Sitter, JHEP 05 (2020) 035 [arXiv:1912.03566] [INSPIRE].
P. S. Apostolopoulos, G. Siopsis and N. Tetradis, Cosmology from an AdS Schwarzschild black hole via holography, Phys. Rev. Lett. 102 (2009) 151301 [arXiv:0809.3505] [INSPIRE].
M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP 10 (2016) 155 [arXiv:1603.01254] [INSPIRE].
S. de Haro, S. N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].
M. Bianchi, D. Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].
M. Bianchi, D. Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].
S. S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [INSPIRE].
P. Kovtun, D. T. Son and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].
C. Eling and Y. Oz, A novel formula for bulk viscosity from the null horizon focusing equation, JHEP 06 (2011) 007 [arXiv:1103.1657] [INSPIRE].
P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, Cambridge University Press, Cambridge, U.K. (2019) [arXiv:1712.05815] [INSPIRE].
P. Kovtun, First-order relativistic hydrodynamics is stable, JHEP 10 (2019) 034 [arXiv:1907.08191] [INSPIRE].
P. M. Chesler and L. G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].
W. van der Schee, Gravitational collisions and the quark-gluon plasma, Ph.D. thesis, Utrecht U., Utrecht, The Netherlands (2014) [arXiv:1407.1849] [INSPIRE].
C. Ecker, Entanglement entropy from numerical holography, Ph.D. thesis, Vienna Tech. U., Vienna, Austria (2018) [arXiv:1809.05529] [INSPIRE].
J. P. Boyd, Chebyshev and Fourier spectral methods, second edition, Dover Books on Mathematics, Dover Publications, Mineola, NY, U.S.A. (2001).
W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical recipes: the art of scientific computing, third edition, Cambridge University Press, Cambridge, U.K. (2007).
P. M. Chesler and L. G. Yaffe, Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
A. Buchel, M. P. Heller and R. C. Myers, Equilibration rates in a strongly coupled nonconformal quark-gluon plasma, Phys. Rev. Lett. 114 (2015) 251601 [arXiv:1503.07114] [INSPIRE].
J. K. Ghosh, E. Kiritsis, F. Nitti and L. T. Witkowski, Holographic RG flows on curved manifolds and quantum phase transitions, JHEP 05 (2018) 034 [arXiv:1711.08462] [INSPIRE].
W. Fischler, S. Kundu and J. F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, JHEP 07 (2014) 021 [arXiv:1311.5519] [INSPIRE].
P. Figueras, V. E. Hubeny, M. Rangamani and S. F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [INSPIRE].
T. S. Bunch and P. C. W. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].
P. S. Apostolopoulos, G. Siopsis and N. Tetradis, Cosmology from an AdS Schwarzschild black hole via holography, Phys. Rev. Lett. 102 (2009) 151301 [arXiv:0809.3505] [INSPIRE].
S. W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].
N. Engelhardt and A. C. Wall, Coarse graining holographic black holes, JHEP 05 (2019) 160 [arXiv:1806.01281] [INSPIRE].
C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
J. Maldacena and G. L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].
P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].
V. E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
C. Ecker, D. Grumiller and S. A. Stricker, Evolution of holographic entanglement entropy in an anisotropic system, JHEP 07 (2015) 146 [arXiv:1506.02658] [INSPIRE].
B. Freivogel, R. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting shadows on holographic reconstruction, Phys. Rev. D 91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].
V. Balasubramanian, B. D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].
N. Engelhardt and A. C. Wall, Extremal surface barriers, JHEP 03 (2014) 068 [arXiv:1312.3699] [INSPIRE].
V. E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
G. W. Gibbons and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].
D. Klemm and L. Vanzo, Aspects of quantum gravity in de Sitter spaces, JCAP 11 (2004) 006 [hep-th/0407255] [INSPIRE].
M. R. Visser, Emergent gravity in a holographic universe, Ph.D. thesis, Amsterdam U., Amsterdam, The Netherlands (2019) [arXiv:1908.05469] [INSPIRE].
T. Jacobson and M. Visser, Spacetime equilibrium at negative temperature and the attraction of gravity, Int. J. Mod. Phys. D 28 (2019) 1944016 [arXiv:1904.04843] [INSPIRE].
J. K. Ghosh, E. Kiritsis, F. Nitti and L. T. Witkowski, Holographic RG flows on curved manifolds and the F -theorem, JHEP 02 (2019) 055 [arXiv:1810.12318] [INSPIRE].
L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].
H. Narnhofer, I. Peter and W. E. Thirring, How hot is the de Sitter space?, Int. J. Mod. Phys. B 10 (1996) 1507 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2011.08194
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Casalderrey-Solana, J., Ecker, C., Mateos, D. et al. Strong-coupling dynamics and entanglement in de Sitter space. J. High Energ. Phys. 2021, 181 (2021). https://doi.org/10.1007/JHEP03(2021)181
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2021)181
Keywords
- Gauge-gravity correspondence
- AdS-CFT Correspondence
- Nonperturbative Effects