Skip to main content

Deformed Heisenberg charges in three-dimensional gravity

A preprint version of the article is available at arXiv.

Abstract

We consider the bulk plus boundary phase space for three-dimensional gravity with negative cosmological constant for a particular choice of conformal boundary conditions: the conformal class of the induced metric at the boundary is kept fixed and the mean extrinsic curvature is constrained to be one. Such specific conformal boundary conditions define so-called Bryant surfaces, which can be classified completely in terms of holomorphic maps from Riemann surfaces into the spinor bundle. To study the observables and gauge symmetries of the resulting bulk plus boundary system, we will introduce an extended phase space, where these holomorphic maps are now part of the gravitational bulk plus boundary phase space. The physical phase space is obtained by introducing two sets of Kac-Moody currents, which are constrained to vanish. The constraints are second-class and the corresponding Dirac bracket yields an infinite-dimensional deformation of the Heisenberg algebra for the spinor-valued surface charges. Finally, we compute the Poisson algebra among the generators of conformal diffeomorphisms and demonstrate that there is no central charge. Although the central charge vanishes and the boundary CFT is likely non-unitary, we will argue that a version of the Cardy formula still applies in this context, such that the entropy of the BTZ black hole can be derived from the degeneracy of the eigenstates of quasi-local energy.

References

  1. R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

  2. R. Beig and N. ÓMurchadha, The Poincaré group as the symmetry group of canonical general relativity, Annals Phys. 174 (1987) 463 [INSPIRE].

    ADS  Article  Google Scholar 

  3. T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

  5. R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

  6. A. Ashtekar, Asymptotic quantization, based on 1984 Naples lectures, Bibliopolis, Napoli, Italy (1987).

    MATH  Google Scholar 

  7. A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].

  8. A. Ashtekar, M. Campiglia and A. Laddha, Null infinity, the BMS group and infrared issues, Gen. Rel. Grav. 50 (2018) 140 [arXiv:1808.07093] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. A. Ashtekar, Asymptotic quantization of the gravitational field, Phys. Rev. Lett. 46 (1981) 573 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. L.B. Szabados, Quasi-local energy-momentum and angular momentum in GR: a review article, Living Rev. Rel. 7 (2004) 4 [INSPIRE].

    Article  Google Scholar 

  11. R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

  12. T. Andrade and D. Marolf, Asymptotic symmetries from finite boxes, Class. Quant. Grav. 33 (2016) 015013 [arXiv:1508.02515] [INSPIRE].

  13. D. Harlow and J.-Q. Wu, Covariant phase space with boundaries, arXiv:1906.08616 [INSPIRE].

  14. V. Chandrasekaran and K. Prabhu, Symmetries, charges and conservation laws at causal diamonds in general relativity, JHEP 10 (2019) 229 [arXiv:1908.00017] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. W. Wieland, Generating functional for gravitational null initial data, Class. Quant. Grav. 36 (2019) 235007 [arXiv:1905.06357] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. L. Freidel, E.R. Livine and D. Pranzetti, Gravitational edge modes: from Kac-Moody charges to Poincaŕe networks, Class. Quant. Grav. 36 (2019) 195014 [arXiv:1906.07876] [INSPIRE].

    ADS  Article  Google Scholar 

  17. G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].

  19. G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP 06 (2014) 129 [arXiv:1403.5803] [INSPIRE].

  20. G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].

  21. H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. E. Witten, A note on boundary conditions in Euclidean gravity, arXiv:1805.11559 [INSPIRE].

  24. S. Carlip, The statistical mechanics of the three-dimensional Euclidean black hole, Phys. Rev. D 55 (1997) 878 [gr-qc/9606043] [INSPIRE].

  25. C. Rovelli, Why gauge?, Found. Phys. 44 (2014) 91 [arXiv:1308.5599] [INSPIRE].

    ADS  Article  Google Scholar 

  26. H. Gomes and A. Riello, Unified geometric framework for boundary charges and particle dressings, Phys. Rev. D 98 (2018) 025013 [arXiv:1804.01919] [INSPIRE].

  27. S. Carlip, Liouville lost, Liouville regained: central charge in a dynamical background, Phys. Lett. B 508 (2001) 168 [gr-qc/0103100] [INSPIRE].

  28. R.L. Bryant, Surfaces of mean curvature one in hyperbolic space, in Théorie des variétés minimales et applications, Astérisque 154-155, Société mathématique de France, France, (1987), pg. 321.

  29. A.I. Bobenko, T.V. Pavlyukevich and B.A. Springborn, Hyperbolic constant mean curvature one surfaces: spinor representation and trinoids in hypergeometric functions, Math. Z. 245 (2003) 63 [math.DG/0206021].

  30. W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. L. Freidel, F. Girelli and B. Shoshany, 2 + 1D loop quantum gravity on the edge, Phys. Rev. D 99 (2019) 046003 [arXiv:1811.04360] [INSPIRE].

  32. C. Meneses and J.A. Zapata, Macroscopic observables from the comparison of local reference systems, Class. Quant. Grav. 36 (2019) 235011 [arXiv:1905.04797] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. R. Oliveri and S. Speziale, Boundary effects in general relativity with tetrad variables, arXiv:1912.01016 [INSPIRE].

  34. E. De Paoli and S. Speziale, A gauge-invariant symplectic potential for tetrad general relativity, JHEP 07 (2018) 040 [arXiv:1804.09685] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  35. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. W. Wieland, New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav. 34 (2017) 215008 [arXiv:1704.07391] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. R.K. Sachs, On the characteristic initial value problem in gravitational theory, J. Math. Phys. 3 (1962) 908 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. R.A. d’Inverno and J. Stachel, Conformal two-structure as the gravitational degrees of freedom in general relativity, J. Math. Phys. 19 (1978) 2447.

    ADS  MathSciNet  Article  Google Scholar 

  39. I.Y. Park, Boundary dynamics in gravitational theories, JHEP 07 (2019) 128 [arXiv:1811.03688] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. W. Wieland, Conformal boundary conditions, loop gravity and the continuum, JHEP 10 (2018) 089 [arXiv:1804.08643] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a New York time story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. W. Donnelly, E. LePage, Y.-Y. Li, A. Pereira and V. Shyam, Quantum corrections to finite radius holography and holographic entanglement entropy, arXiv:1909.11402 [INSPIRE].

  43. R. Penrose and W. Rindler, Spinors and space-time, two-spinor calculus and relativistic fields, volumes 1 and 2, Cambridge University Press, Cambridge, U.K. (1984).

  44. B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity, Class. Quant. Grav. 35 (2018) 13LT01 [arXiv:1803.02759] [INSPIRE].

  45. S. Carlip, Quantum gravity in 2 + 1 dimensions, Cambridge University Press, Cambridge, U.K. (2003).

    MATH  Google Scholar 

  46. A. Perez, The spin foam approach to quantum gravity, Living Rev. Rel. 16 (2013) 3 [arXiv:1205.2019] [INSPIRE].

    Article  Google Scholar 

  47. M. Dupuis, F. Girelli and E.R. Livine, Deformed spinor networks for loop gravity: towards hyperbolic twisted geometries, Gen. Rel. Grav. 46 (2014) 1802 [arXiv:1403.7482] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. C. Charles and E.R. Livine, Closure constraints for hyperbolic tetrahedra, Class. Quant. Grav. 32 (2015) 135003 [arXiv:1501.00855] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. V. Bonzom, M. Dupuis, F. Girelli and E.R. Livine, Deformed phase space for 3d loop gravity and hyperbolic discrete geometries, arXiv:1402.2323 [INSPIRE].

  50. J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

  51. S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

  52. E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

  53. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. V.G. Turaev and O.Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology 31 (1992) 865 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  55. G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in Spectroscopic and group theoretical methods in physics, F. Bloch et al. eds., North Holland, Amsterdam, The Netherlands (1968), pg. 30.

  56. J.W. Barrett and I. Naish-Guzman, The Ponzano-Regge model, Class. Quant. Grav. 26 (2009) 155014 [arXiv:0803.3319] [INSPIRE].

    ADS  Article  Google Scholar 

  57. L. Freidel and K. Krasnov, A new spin foam model for 4d gravity, Class. Quant. Grav. 25 (2008) 125018 [arXiv:0708.1595] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. J. Engle, E. Livine, R. Pereira and C. Rovelli, LQG vertex with finite Immirzi parameter, Nucl. Phys. B 799 (2008) 136 [arXiv:0711.0146] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. J. Engle, R. Pereira and C. Rovelli, The loop-quantum-gravity vertex-amplitude, Phys. Rev. Lett. 99 (2007) 161301 [arXiv:0705.2388] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. E. Bianchi, J. Guglielmon, L. Hackl and N. Yokomizo, Squeezed vacua in loop quantum gravity, arXiv:1605.05356 [INSPIRE].

  63. L. Freidel and E.R. Livine, U(N ) coherent states for loop quantum gravity, J. Math. Phys. 52 (2011) 052502 [arXiv:1005.2090] [INSPIRE].

  64. L. Freidel and S. Speziale, Twisted geometries: a geometric parametrisation of SU(2) phase space, Phys. Rev. D 82 (2010) 084040 [arXiv:1001.2748] [INSPIRE].

  65. F. Girelli and E.R. Livine, Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators, Class. Quant. Grav. 22 (2005) 3295 [gr-qc/0501075] [INSPIRE].

  66. W. Wieland, Fock representation of gravitational boundary modes and the discreteness of the area spectrum, Annales Henri Poincaŕe 18 (2017) 3695 [arXiv:1706.00479] [INSPIRE].

  67. A. Kempf, Spacetime could be simultaneously continuous and discrete in the same way that information can, New J. Phys. 12 (2010) 115001 [arXiv:1010.4354] [INSPIRE].

    ADS  Article  Google Scholar 

  68. A.P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].

  69. J. Lewandowski, A. Okolow, H. Sahlmann and T. Thiemann, Uniqueness of diffeomorphism invariant states on holonomy-flux algebras, Commun. Math. Phys. 267 (2006) 703 [gr-qc/0504147] [INSPIRE].

  70. B. Bahr, B. Dittrich and M. Geiller, A new realization of quantum geometry, arXiv:1506.08571 [INSPIRE].

  71. B. Dittrich, The continuum limit of loop quantum gravity — a framework for solving the theory, in Loop quantum gravity: the first 30 years, A. Ashtekar and J. Pullin eds., World Scientific, Singapore (2017), pg. 153 [arXiv:1409.1450] [INSPIRE].

  72. V. Bonzom and B. Dittrich, 3D holography: from discretum to continuum, JHEP 03 (2016) 208 [arXiv:1511.05441] [INSPIRE].

    ADS  Article  Google Scholar 

  73. B. Dittrich, C. Goeller, E. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity I — convergence of multiple approaches and examples of Ponzano-Regge statistical duals, Nucl. Phys. B 938 (2019) 807 [arXiv:1710.04202] [INSPIRE].

    ADS  Article  Google Scholar 

  74. B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity II — from coherent quantum boundaries to BMS3 characters, Nucl. Phys. B 938 (2019) 878 [arXiv:1710.04237] [INSPIRE].

    ADS  Article  Google Scholar 

  75. W.E. Thirring, A soluble relativistic field theory?, Annals Phys. 3 (1958) 91 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wieland.

Additional information

ArXiv ePrint: 1912.09514

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Namburi, J.C., Wieland, W. Deformed Heisenberg charges in three-dimensional gravity. J. High Energ. Phys. 2020, 175 (2020). https://doi.org/10.1007/JHEP03(2020)175

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2020)175

Keywords

  • Classical Theories of Gravity
  • Models of Quantum Gravity
  • AdS-CFT Correspondence
  • Chern-Simons Theories