Abstract
We study the production of chiral fermions in a background of a strong non-abelian gauge field with a non-vanishing Chern-Pontryagin density. We discuss both pair production analogous to the Schwinger effect as well as asymmetric production through the chiral anomaly, sourced by the Chern-Pontryagin density. In abelian gauge theories one may nicely understand these processes by considering that the fermion dispersion relation forms discrete Landau levels. Here we extend this analysis to a non-abelian gauge theory, considering an intrinsically non-abelian isotropic and homogeneous SU(2) gauge field background with a non-vanishing Chern-Pontryagin density. We show that the asymmetric fermion production, together with a non-trivial vacuum contribution, correctly reproduces the chiral anomaly. This indicates that the usual vacuum subtraction scheme, imposing normal ordering, fails in this case. As a concrete example of this gauge field background, we consider chromo-natural inflation. Applying our analysis to this particular model, we compute the backreaction of the generated fermions on the gauge field background. This backreaction receives contributions both from the vacuum through a Coleman-Weinberg-type correction and from the fermion excitations through an induced current.
References
S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].
J.S. Bell and R. Jackiw, A PCAC puzzle: π 0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].
F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].
A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].
A.Y. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, Phys. Rev. Lett. 81 (1998) 3503 [cond-mat/9803346] [INSPIRE].
K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
D.T. Son and N. Yamamoto, Berry Curvature, Triangle Anomalies and the Chiral Magnetic Effect in Fermi Liquids, Phys. Rev. Lett. 109 (2012) 181602 [arXiv:1203.2697] [INSPIRE].
D.T. Son and B.Z. Spivak, Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals, Phys. Rev. B 88 (2013) 104412 [arXiv:1206.1627] [INSPIRE].
A.A. Zyuzin and A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B 86 (2012) 115133 [arXiv:1206.1868] [INSPIRE].
K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].
K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].
S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].
H.B. Nielsen and M. Ninomiya, Adler-Bell-Jackiw anomaly and Weyl fermions in crystal, Phys. Lett. 130B (1983) 389 [INSPIRE].
W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].
V. Domcke and K. Mukaida, Gauge Field and Fermion Production during Axion Inflation, JCAP 11 (2018) 020 [arXiv:1806.08769] [INSPIRE].
M.F. Atiyah and I.M. Singer, The index of elliptic operators on compact manifolds, Bull. Am. Math. Soc. 69 (1969) 422.
M.F. Atiyah and I.M. Singer, The Index of elliptic operators. 1, Annals Math. 87 (1968) 484.
P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302 [arXiv:1202.2366] [INSPIRE].
E. Dimastrogiovanni, M. Fasiello and A.J. Tolley, Low-Energy Effective Field Theory for Chromo-Natural Inflation, JCAP 02 (2013) 046 [arXiv:1211.1396] [INSPIRE].
E. Dimastrogiovanni and M. Peloso, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, Phys. Rev. D 87 (2013) 103501 [arXiv:1212.5184] [INSPIRE].
P. Adshead, E. Martinec and M. Wyman, Gauge fields and inflation: Chiral gravitational waves, fluctuations and the Lyth bound, Phys. Rev. D 88 (2013) 021302 [arXiv:1301.2598] [INSPIRE].
P. Adshead, E. Martinec and M. Wyman, Perturbations in Chromo-Natural Inflation, JHEP 09 (2013) 087 [arXiv:1305.2930] [INSPIRE].
K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger Effect by an SU(2) Gauge Field during Inflation, JHEP 02 (2019) 041 [arXiv:1805.09318] [INSPIRE].
N. Tanji and K. Itakura, Schwinger mechanism enhanced by the Nielsen-Olesen instability, Phys. Lett. B 713 (2012) 117 [arXiv:1111.6772] [INSPIRE].
Y. Verbin and A. Davidson, Quantized non-abelian wormholes, Phys. Lett. B 229 (1989) 364 [INSPIRE].
A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge Fields and Inflation, Phys. Rept. 528 (2013) 161 [arXiv:1212.2921] [INSPIRE].
V. Domcke, B. Mares, F. Muia and M. Pieroni, Emerging chromo-natural inflation, arXiv:1807.03358 [INSPIRE].
A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: Inflation From Non-Abelian Gauge Fields, Phys. Lett. B 723 (2013) 224 [arXiv:1102.1513] [INSPIRE].
A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian Gauge Field Inflation, Phys. Rev. D 84 (2011) 043515 [arXiv:1102.1932] [INSPIRE].
P. Adshead and M. Wyman, Gauge-flation trajectories in Chromo-Natural Inflation, Phys. Rev. D 86 (2012) 043530 [arXiv:1203.2264] [INSPIRE].
M.M. Sheikh-Jabbari, Gauge-flation Vs Chromo-Natural Inflation, Phys. Lett. B 717 (2012) 6 [arXiv:1203.2265] [INSPIRE].
R.R. Caldwell and C. Devulder, Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on B Modes from the Matter-Antimatter Asymmetry of the Universe, Phys. Rev. D 97 (2018) 023532 [arXiv:1706.03765] [INSPIRE].
G. Dall’Agata, Chromo-Natural inflation in Supergravity, Phys. Lett. B 782 (2018) 139 [arXiv:1804.03104] [INSPIRE].
E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial Gravitational Waves from Axion-Gauge Fields Dynamics, JCAP 01 (2017) 019 [arXiv:1608.04216] [INSPIRE].
E. McDonough and S. Alexander, Observable Chiral Gravitational Waves from Inflation in String Theory, JCAP 11 (2018) 030 [arXiv:1806.05684] [INSPIRE].
P. Adshead, E. Martinec, E.I. Sfakianakis and M. Wyman, Higgsed Chromo-Natural Inflation, JHEP 12 (2016) 137 [arXiv:1609.04025] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995) [https://www.slac.stanford.edu/~mpeskin/QFT.html] [INSPIRE].
S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1812.08021
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Domcke, V., Ema, Y., Mukaida, K. et al. Chiral anomaly and Schwinger effect in non-abelian gauge theories. J. High Energ. Phys. 2019, 111 (2019). https://doi.org/10.1007/JHEP03(2019)111
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2019)111
Keywords
- Anomalies in Field and String Theories
- Cosmology of Theories beyond the SM
- Global Symmetries
- Quark-Gluon Plasma