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1 Introduction

Symmetries have been an invaluable guiding principle in the construction of the Standard

Model (SM) of particle physics. On the one hand, gauge symmetries dictate the particle

content and interactions. On the other hand, (approximate) global symmetries explain the

lightness of scalars (such as the pion) as well as the (approximate) conservation of global

charges (such as baryon B and lepton L number). In this context, a special role is played by

global symmetries which are unbroken in the classical field theory, but violated by quantum

corrections. Such ‘anomalously’ broken symmetries explain e.g., the unexpectedly large

pion decay rate [1, 2], the violation of B + L through electroweak sphaleron processes [3],

and the chiral magnetic effect [4–9]. The anomaly equation states that the non-conservation
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of the corresponding chiral current (i.e., the difference of right-handed fermion current JµR
and left-handed fermion current JµL ), is determined by the gauge field configuration entering

the Chern-Pontryagin density FF̃ [10, 11],

∂µ
(
JµR − J

µ
L

)
= − 1

16π2
FµνF̃

µν , (1.1)

where Fµν (F̃µν) denotes the (dual) field strength tensor of the gauge field. In other

words, certain gauge field configurations lead to an asymmetric fermion production. The

result (1.1) can be elegantly proven in the path-integral formalism [10, 11] and has been

demonstrated to be exact to all orders in perturbation theory [12].

In this paper we provide a microphysical derivation of the anomaly equation (1.1) in

an SU(2) gauge theory, based on solving the fermion equation of motion in a gauge field

background. This task was performed for an abelian gauge theory in ref. [13]. There, the

Lorentz force confined the fermion motion onto cylindrical orbits, leading a dispersion re-

lation characterized by discrete Landau levels. The lowest of these Landau levels smoothly

connects negative and positive energy states, and was identified as the source of the asym-

metric fermion production accounted for by the anomaly equation. This microphysical

understanding then allows for further results beyond reproducing the anomaly equation:

the higher Landau levels, which due to their symmetry under a parity transformation do

not contribute to the anomaly equation, instead allow for pair production of fermions and

anti-fermions, analogous to Schwinger pair production in a strong electric field [14, 15].

In ref. [16] these results were extended to account for the strong backreaction of the pro-

duced fermions on the gauge field background, with implications for axion inflation models

and leptogenesis.

Extending this analysis to the non-abelian case, we encounter a number of significant

differences. Firstly, non-abelian gauge fields allow for a non-vanishing, isotropic and ho-

mogenous gauge field background which sources a non-vanishing Chern-Pontryagin density.

In this isotropic background, the fermion dispersion relation does not form discrete Landau

levels, but instead we find an energy spectrum which is fully asymmetric between left- and

right-handed fermions. Corresponding to the four degrees of freedom of a Dirac fermion

SU(2) doublet, we find one mode which smoothly connects negative and positive energy

eigenstates as well as three gapped modes. Secondly, asymmetric fermion production in

the gapless mode alone does not reproduce eq. (1.1). Instead, due to the asymmetric

structure of the energy levels, there is an additional vacuum contribution, known to some

as the eta invariant [17, 18]. Thirdly, the pair production of fermions is a non-adiabatic

process, arising from the time-dependent mixing of two of the energy eigenstates. And fi-

nally, compared to the abelian case, the backreaction of the induced fermion current on the

background gauge field is less significant, at least for the exemplary non-adiabatic evolution

considered here.

As a concrete example of these results, we turn to chromo-natural inflation (CNI) [19].

Here a pseudoscalar φ with a coupling to FF̃ is responsible for driving cosmic inflation,

resulting in a strong homogeneous and isotropic gauge field background present during

inflation. On the theoretical side, this model is attractive because it explains the flatness
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of the scalar potential by means of an approximate shift symmetry (respected by the

coupling φFF̃ ) and because such shift-symmetric pseudoscalars (i.e., axion-like particles)

arise numerously in string theory. On the phenomenological side, the prospect of strong

gravitational wave production has received a lot of attention [20–23]. Here, we compute the

production of fermions charged under the SU(2) gauge group employed in chromo-natural

inflation in the presence of a chiral anomaly. In particular, we compute the backreaction on

the gauge field background, which receives contributions from the vacuum (both adiabatic

and non-adiabatic) and from the fermion excitations (both symmetric and asymmetric).

Similar studies have been carried out for scalar fields charged under the SU(2) gauge group,

finding that their backreaction is suppressed because all the modes become gapped [24]. A

striking difference in our case is that the production of fermions through the chiral anomaly

does not show this suppression, i.e., the operator equation (1.1) indicates the presence of

at least one gapless mode. Nevertheless, we find these backreaction effects to be small,

indicating that the non-linear effects of the non-abelian gauge field background are the

dominant effect in constraining the gauge field growth. The fermion production during

chromo-natural inflation may however be relevant for a subsequent phase of (p)reheating

and/or baryogenesis.

The remainder of the paper is organized as follows. In section 2 we specify our setup,

deriving the equations of motion for the fermions, which set the foundation for the following

computations. We also briefly introduce chromo-natural inflation as a concrete example

featuring a strong gauge field background. The derivation of the anomaly equation is

at the core of section 3, which includes the computation of vacuum contribution and of

the contribution from the gapless fermion mode. In section 4 we include non-adiabatic

contributions as well as the backreaction on the gauge field background, focussing on the

example of chromo-natural inflation. We conclude in section 5. Technical details are rel-

egated to our four appendices. In particular, appendix A specifies our conventions and

provides details on CP transformation. Appendix B provides supplementary material on

the derivation of the anomaly equation, in particular on the regularization of the vac-

uum contribution. Appendix C extends the discussion of the main text (which focuses on

fermions in the fundamental representation) to general fermion representations. Finally,

appendix D contains an analytical derivation of the Bogolyubov coefficients responsible for

fermion pair production.

2 Fermions in a non-abelian gauge field background

2.1 Setup and motivation

Model. As a minimal setup for fermion production in non-abelian gauge theories in the

presence of a chiral anomaly, we consider massless chiral fermions charged under an SU(2)

gauge theory. To see the difference between the left (L)- and right (R)-handed fermions

explicitly, we include both of them, working in 4-spinor notation, ψ = ψL + ψR. Our

starting point is the following action:

Sψ =

∫
d4xψ

(
i/∂ + /A

a
T a
)
ψ , (2.1)
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where T a is a generator of the SU(2) gauge group and Aaµ represents an SU(2) gauge field.1

Throughout this paper, we denote x0 = η. Since the fermion is conformally coupled in

this theory, our analysis applies both to flat space, characterized by the Minkowski metric,

(ηµν) = Diag(1,−1,−1,−1), as well as to an expanding universe described by the FLRW

metric, (gµν) = Diag(a2,−a2,−a2,−a2) with a(η) denoting the cosmic scale factor and η

referring to conformal time. See section 2.2 for details.

Classically, the left- and right-handed fermion currents are separately conserved. How-

ever, once quantum processes are included, the axial combination is broken, which is known

as the chiral anomaly:

∂µ
(
JµR + JµL

)
= 0 , (2.2)

∂µ
(
JµR − J

µ
L

)
= − 1

8π2
T (r)F aµνF̃

a µν , (2.3)

where the left/right-handed currents are defined by

JµH ≡ ψγ
µPHψ . (2.4)

Here the subscript H = {L,R} indicates helicity, with the corresponding projection opera-

tor defined by PR/L ≡ (1± γ5)/2. F aµν denotes the field strength tensor of the SU(2) gauge

group, F aµν = ∂µA
a
ν − ∂νAaµ + εabcAbµA

c
ν , with the dual field strength defined as F̃ a µν ≡

εµνρσF aρσ/2. The convention of the total antisymmetric tensor is fixed by ε0123 = +1. Note

that 2T (r) is the Dynkin index of a representation (r) defined by Tr (T aT b) = T (r) δab. For

a fundamental representation (2) we have T (2) = 1/2. In the main text we will focus on

fermions in the fundamental representation. See appendix C for a general representation.

For later convenience we define charges associated to these currents,

QH(η) ≡
∫

d3xJ0
H(η,x) . (2.5)

The conservation laws in terms of these charges are2

∂

∂η
(〈QR〉+ 〈QL〉) = 0, (2.6)

∂

∂η
(〈QR〉 − 〈QL〉) = − 1

8π2
T (r)

∫
d3x

〈
F aµνF̃

aµν
〉
, (2.7)

where 〈•〉 denotes an expectation value of a given state.

Motivation. Generally speaking, fermions charged under a gauge group can be gener-

ated in the presence of a strong gauge field. One may study this process by solving the

equation of motion for fermions in the background of this gauge field. Before turning to

fermion production in an intrinsically non-abelian background, let us first re-call the situ-

ation in a (quasi-)Abelian background. A classic example is studied in ref. [13]: fermion

1Throughout this paper, a, b, . . . = {1, 2, 3} denote gauge indices, µ, ν, . . . = {0 . . . 3} denote Lorentz

indices and i, j, . . . = {1 . . . 3} denote spatial indices.
2One may drop ∂i〈J iH〉 because we assume the translational invariance throughout this paper, which

implies 〈J iH(η,x)〉 = 〈J iH(η,0)〉.
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production in parallel electric and magnetic fields in abelian gauge field theory. There the

dispersion relations of fermions form discrete Landau levels since the magnetic field restricts

the motion of fermions transverse to the magnetic field by the Lorentz force. Taking the

electromagnetic fields parallel to the z-axis, the lowest Landau level, which represents the

mode (anti)parallel to the magnetic field, has the following dispersion relation: ω = ±pz
for the right- and left-handed fermions, respectively. Thus the positive and negative en-

ergy states are smoothly connected. Since fermions get accelerated by the electric field,

ṗz = gQE, the highest lying negative energy states are converted into positive energy states

for the right-handed fermions (and vice versa for the left-handed fermions), leading to a

chiral asymmetry. Ref. [13] shows explicitly that the resulting chiral asymmetry computed

in this way, i.e., by solving the equation of motion, is consistent with the anomaly equation.

Our primary motivation is to extend this analysis to a non-abelian gauge field. One

may e.g., consider the following background of the non-abelian gauge field [25]:3

Aaµ = Aµn
a, Aµ = (0, 0,−Bx,Eη) , (2.8)

where na is an arbitrary constant unit vector. This leads to homogeneous color elec-

tric/magnetic fields pointing along the z-axis. This configuration is, however, essentially

the same as abelian gauge field case. The unit vector, na, projects the non-abelian gauge

group onto its U(1) subgroup and hence one may apply the analysis of the abelian gauge

field straightforwardly. One may take (na) = (0, 0, 1) without loss of generality. The

effective charges of fermions with respect to the abelian gauge field, Aµ, are given by

m = −j,−j + 1, . . . , j − 1, j for a 2j+1 representation of SU(2). Now it is clear that the

computation is exactly the same as the abelian case. All one has to do is to sum over

all the fermions, namely a summation over the charge squared, which is nothing but the

Dynkin index:

j∑
m=−j

m2 =
1

3
(2j + 1)(j + 1)j = T (2j+1) . (2.9)

Therefore we reproduce the anomaly equation (2.7).

In this paper we consider a more intriguing configuration which cannot be achieved in

abelian gauge theory, i.e., an intrinsically non-abelian gauge field configuration. Contrary

to an abelian gauge theory, an SU(2) gauge theory allows for a non-vanishing homogeneous

and isotropic gauge field background. Up to spatial rotations and gauge transformations,

this is uniquely given by (see e.g., [26–28])

Aa0 = 0 , Aai = −f(η) δai , (2.10)

where we have imposed temporal gauge. Interestingly, this configuration gives rise to a

non-vanishing Chern-Pontryagin density,

Eai =−∂ηAai =−∂ηf δai , Bai =
1

2
εijkF aj

k =−f2δai , F aµνF̃
aµν =−4EaiBai =−12f ′f2 .

(2.11)

3Note that this configuration gives homogeneous electric and magnetic fields pointing the z direction.

As a result, they do not break the translational invariance and hence we may use eqs. (2.6) and (2.7).
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The non-vanishing color magnetic field arising from the homogeneous vector potential is a

clear indicator of the intrinsically non-abelian nature of this phenomenon. Due to homo-

geneity and isotropy, we no longer expect the fermion dispersion relation to be described

by Landau levels, hence we expect the implementation of the anomaly equation on the

microphysical level to be qualitatively different than in the abelian case. Note that the

configuration (2.10) can be realized for any gauge group which has an SU(2) subgroup.

In the remainder of this paper we study the fermion production by solving the equa-

tion of motion for a fermion in the non-trivial homogeneous and isotropic gauge field

background (2.10). A primary example of this gauge field configuration is chromo-natural

inflation, see section 2.2. In section 4, we apply our analysis to chromo-natural inflation

and discuss the backreaction of generated fermions on the gauge field.

2.2 Chromo-natural inflation

Well-studied applications of the gauge field background (2.10) arise e.g., in models of

cosmic inflation employing SU(2) gauge fields: in ‘gauge-flation’ [29, 30] (see also [31, 32])

a non-trivial isotropic gauge field background was shown to support a phase of cosmic

inflation, in ‘chromo-natural infation’ [19] the presence of such a gauge field background was

shown act as an effective friction term in the inflaton dynamics. In both cases, the gauge

field fluctuations around this background, exponentially enhanced through a tachyonic

instability, can source a sizable gravitational wave background [20–23].4

Action. In the following we focus on the example of chromo-natural inflation, considering

the following action,

S = SEH + Sψ + SCNI , (2.12)

where SEH is the usual Einstein-Hilbert action, Sψ denotes the action for a massless fermion

and SCNI describes a pseudoscalar φ coupled to the SU(2) gauge fields. After identifying

φ as the inflaton, the latter describes chromo-natural inflation (CNI), and is given by

SCNI =

∫
d4x

{
√
−g
[
gµν

2
∂µφ∂νφ− V (φ)− 1

4g2
gµρgνσF̂ aµνF̂

a
ρσ

]
+

φ

16π2fa
F̂ aµν

ˆ̃F aµν

}
,

(2.13)

where V (φ) is a potential and g denotes the SU(2) gauge coupling.5 The coupling to the

Chern-Pontryagin density F̂ ˆ̃F is determined by the axion decay constant fa, which may be

interpreted as the cut-off scale of the effective field theory. Here, to distinguish from the

formulation in co-moving coordinates in the previous section, we have used “•̂” to denote

quantities in physical coordinates.

4While the minimal model is by now disfavoured by CMB observations, consistency with the data

can be achieved by employing different inflation potentials [33, 34], by enlarging the field content of the

model [35, 36], by considering a spontaneously broken gauge symmetry [37] or by taking into account the

dynamical evolution of the gauge field background from Bunch Davies initial conditions [28].
5The gauge coupling, g, should not be confused with the FLRW metric gµν or it’s determinant√
−g =

√
−det(gµν).
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The gauge field is conformal and hence one may factor out the expansion of the Universe

by the following field redefinition:

(Aaµ) ≡ (Âa0,−Aa) = (Âaµ) , (Aaµ) ≡ (Âa0,A
a) = a2(Âaµ) , (2.14)

with a denoting the cosmic scale factor. Note that we raise/lower indices of the rescaled

field, Aaµ, by the flat metric, (ηµν) = Diag (1,−1,−1,−1), while those of the original field,

Âaµ, are raised/lowered by the FLRW metric, (gµν) = Diag (a2,−a2,−a2,−a2). In this

conformal basis our action simplifies to

SCNI =

∫
d4x

{
√
−g
[
gµν

2
∂µφ∂νφ− V (φ)

]
− 1

4g2
F aµνF

aµν +
φ

16π2fa
F aµνF̃

aµν

}
. (2.15)

The massless fermion is also conformally invariant, and hence the fermion action in the

FLRW background can be recast as (see, e.g., [16])

Sψ =

∫
d4x ψγµ

(
i∂µ +AaµT

a
)
ψ , (2.16)

where the gamma matrices here are defined on the flat coordinates: {γµ, γν} = 2(ηµν) .

Following the derivation of refs. [10, 11] (see also [38]), it is clear that the presence of φ

and in particular its coupling to the Chern-Pontryagin density does not modify the chiral

anomaly equation. Thus the usual equations for the vector and axial current, respectively

as in eqs. (2.2) and (2.3), remain valid.

Background equation of motion. In the presence of Chern-Simons type coupling φFF̃

with φ̇ 6= 0, non-abelian gauge groups support the nontrival homogeneous isotropic solution

specified in eq. (2.10),

Aa0 = 0, Aai = −f(η) δai = −a(η)f̂(η) δai . (2.17)

Neglecting a possible backreaction arising from the fermions in the theory (to which we

will return in section 4), the equation of motion for this homogeneous component in a quasi

de-Sitter background, a(η) = 1/(−Hη), reads

f ′′(η) + 2f3(η)− 2ξ

(−η)
f2(η) = 0 , with ξ ≡ αφ̇

2πfaH
. (2.18)

Here w.l.o.g. we have assumed φ̇ > 0. We note that under a parity transformation, φ̇ 7→ −φ̇
and f 7→ −f . Taking ξ to be a constant parameter, consistent with the slow-roll approxima-

tion |φ̈| � |3Hφ̇|, |V ′(φ)|, eq. (2.18) admits three asymptotic solutions, gf(η) = ciξ/(−η)

with [28]

c0 = 0 , c1 =
1

2

(
1−

√
1− 4/ξ2

)
, c2 =

1

2

(
1 +

√
1− 4/ξ2

)
. (2.19)

The c0- and c2-solutions are attractor solutions, and are obtained as the asymptotic state of

general oscillatory solutions. The c1-solution represents a local maximum separating the c0
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and the c2 regime. Note that the c1- and c2-solutions are only possible for ξ > 2. Intuitively,

one may think of f(η) as a scalar degree of freedom in an effective time-dependent potential,

which for ξ > 2 features a local minimum associated with c0 and a global minimum

associated with c2.

Of particular interest to us is the c2-solution, which represents a non-trivial attractor

solution for homogeneous isotropic SU(2) gauge fields in quasi de-Sitter space. When

specifying the explicit form of f(η) in section 4, we will choose this global minimum of

CNI, i.e.,

f(η) =
c2ξ

−η
' ξ

−η
, f̂(η) = c2ξH ' ξH , (2.20)

where the last equality holds for ξ � 2. We note that in quasi de-Sitter space, H ' const.

and φ̇ ' const., the quantity f̂ is approximately constant. Expanding around the gauge

field background (2.20), one mode of the gauge field fluctuations acquires a tachyonic mass,

leading to a strong non-perturbative production of this gauge field mode [20–23, 28]. Since

the main focus of this paper is fermion production, we will mostly ignore this instability in

the following. We note that at least in some parts of the parameter space, the homogeneous

gauge field background safely dominates over this non-perturbative contribution [37].

In the following we will study charged fermion production in the gauge field back-

ground (2.10). In section 4, where we need to specify the explicit time evolution of this

gauge field background in order to study non-adiabatic processes, we will resort to chromo-

natural inflation, eq. (2.20), as a prime example.

2.3 Basic ingredients

Equation of motion. To study the fermion production, we will solve the fermion equa-

tion of motion in this gauge field background. After a Fourier transformation,

ψL/R(η,x) =

∫
d3k

(2π)3/2
eik·xψL/R(η,k) , (2.21)

this equation of motion is given by

0 = [i∂η ± σ · k ± f(η)σ · T ]ψL/R(η,k) , (2.22)

with the Pauli matrices σ acting on the spin indices while the SU(2) generators T a acting

on the gauge indices of ψ. Thanks to rotational invariance, we can take k along the z-

direction without loss of generality. The eigenbases of the spin (χ
(±)
k ) and gauge (t

(±)
k )

degrees of freedom then obey(
k̂ · σ

)
χ

(±)
k = ±χ(±)

k ,
(
k̂ · T

)
t
(±)
k = ±1

2
t
(±)
k , (2.23)

with k̂ = êz and

χ
(+)
k , t

(+)
k =

(
1

0

)
, χ

(−)
k , t

(−)
k =

(
0

1

)
. (2.24)
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One may expand the wave function of the fermion in terms of a product of these polarization

vectors,6

ψL/R(η,k) =
∑

s,m=±
ψ

(s,m)
L/R (η,k)χ

(s)
k t

(m)
k . (2.25)

In this basis the equation of motion (2.22) is simplified significantly. Noticing the following

relation, σ ·T = (σ+T−+σ−T+)/2 + (k̂ ·σ)(k̂ ·T ) with σ± and T± denoting the respective

ladder operators,7 one may easily see that the lowest mode, ψ
(−,−)
L/R , and highest mode,

ψ
(+,+)
L/R , are decoupled, while the other modes, ψ

(+,−)
L/R and ψ

(−,+)
L/R get mixed:

0 =

[
i∂η ±

(
k +

f(η)

2

)]
ψ

(+,+)
L/R (η,k) , (2.26)

0 =

[
i∂η ∓

(
k − f(η)

2

)]
ψ

(−,−)
L/R (η,k) , (2.27)

0 =

[
i∂η ± k

(
1

−1

)
± f(η)

2

(
−1 2

2 −1

)](
ψ

(+,−)
L/R (η,k)

ψ
(−,+)
L/R (η,k)

)
, (2.28)

where k ≡ |k|. This mixing structure is easily understood once we note that the diagonal

part of the SU(2) gauge and SO(3) spatial rotational symmetries, and hence s + m, is

conserved in our gauge field configuration.

Energy eigenbasis for constant gauge field background. Before discussing the

time evolution of f(η), let us discuss a constant gauge field background f and see how this

modifies the dispersion relation. For a constant f , one may easily solve eqs. (2.26), (2.27),

and (2.28). The solutions to these first order differential equations will be of the type

ψ ∝ exp(−iω(k)η), where we associate positive frequencies ω(k) > 0 with particles and

negative frequencies ω(k) < 0 with anti-particles. More precisely, we find the dispersion

relations:

ω
(+1)
L/R = ∓

(
k +

f

2

)
, (2.29)

ω
(−1)
L/R = ±

(
k − f

2

)
, (2.30)

ω
(0;1)
L/R = ∓

(√
k2 + f2 − f

2

)
, (2.31)

ω
(0;2)
L/R = ±

(√
k2 + f2 +

f

2

)
, (2.32)

corresponding to four states at any given value of k for each chirality, as expected for a

fermion doublet. Here the (first argument of the) superscript indicates the eigenvalue of

6Compared to the discussion for general representations in appendix C, we use m = ±1 instead of

m = ±1/2 for the discussion of the fundamental representation in the main text to ease the notation.
7σ±χ

(∓)
k = χ

(±)
k , σ±χ

(±)
k = 0 and T± analogously.
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Figure 1. Left panel : dispersion relation for the left-handed fermion. One mode, λ = (−1), crosses

the zero energy while the other three modes are gapped. Right panel : dispersion relation for the

right-handed fermion. It is obtained from flipping the sign of the energy for the left-handed fermion.

the total spin in the z-direction, i.e., (s + m)/2. To obtain eq. (2.31) and (2.32), we have

diagonalized eq. (2.28) by the rotation matrix O which is defined by

O(κ) =


1√
2

κ√
κ2

√
1 + 1√

1+1/κ2

1√
2

√
1− 1√

1+1/κ2

− 1√
2

√
1− 1√

1+1/κ2

1√
2

κ√
κ2

√
1 + 1√

1+1/κ2

 , (2.33)

so that (
ψ

(0;1)
L/R (η,k)

ψ
(0;2)
L/R (η,k)

)
= O(k/f)

(
ψ

(+,−)
L/R (η,k)

ψ
(−,+)
L/R (η,k)

)
. (2.34)

The dispersion relation is also shown in figure 1. There is one mode which smoothly

connects the negative and positive energy states while the other three modes are gapped.

The vacuum state is obtained by filling the negative energy states, corresponding to the

Dirac sea. We can expand the resulting fermion wave function in the energy eigenbasis as

ψL = ei(k+ f
2 )ηd

(+1)†
L,−k e

(+1)
k +

[
e−i(k−

f
2 )η θ

(
f

2
−k
)
d

(−1)†
L,−k +e−i(k−

f
2 )η θ

(
k− f

2

)
b
(−1)
L,k

]
e

(−1)
k

+e
i
(√

k2+f2− f
2

)
η
d

(0)†
L,−ke

(0;1)
k +e

−i
(√

k2+f2+ f
2

)
η
b
(0)
L,ke

(0;2)
k , (2.35)

with the vacuum being annihilated by d
(•)
L,k |0〉 = b

(•)
L,k |0〉 = 0 (with d associated with nega-

tive energy states and b with positive energy states). Here we have adopted the following

normalization for the commutators: {b(p)L,k, b
(p′)
L,q
†} = (2π)3δpp′δ(k − q) and {d(n)

L,k, d
(n′)
L,q
†} =

(2π)3δnn′δ(k− q). Note that the mixed modes ψ
(0;1)
L/R and ψ

(0;2)
L/R always feature exactly one

positive and one negative frequency mode per helicity, so that the corresponding annihila-

tion operators can be simply denoted by b(0) and d(0), respectively. Along the same lines,

note that the Heaviside theta function must appear together with d
(−1)
L,−k and b

(−1)
L,k since they

are only defined for k < f/2 and k > f/2 respectively. In the rest of this paper we usually
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omit this theta function for a notational simplicity unless it leads to some confusions. The

eigenvectors e
(•)
k introduced in eq. (2.35) are constructed to diagonalize the Hamiltonian,

e
(+1)
k ≡ χ(+)

k t
(+)
k , e

(−1)
k ≡ χ(−)

k t
(−)
k ,

(
e

(0;1)
k

e
(0;2)
k

)
= O(k/f)

(
χ

(+)
k t

(−)
k

χ
(−)
k t

(+)
k

)
. (2.36)

Note that the dispersion relations for the left- and right-handed fermion interchange (after

re-labeling the states) under flipping the sign of f , i.e., ωL ↔ ωR for f ↔ −f . This behavior

is expected because the sign-flipping f 7→ −f is nothing but the parity transformation as

can be seen from eq. (2.17). In other words, once we have solved the equation of motion

for, e.g., all left-handed fermions on a given background f , we can obtain the solution

for the right-handed fermions by simply flipping the sign of f , since the spectrum of left-

handed fermions in a background −f is equivalent to the spectrum of right-fermions in the

background +f .

Strategy to analyze particle production. Now we are in a position to discuss how

to estimate particle production induced by the evolution of f(η). To define the notion

of particle and anti-particle unambiguously, we assume that f(η) takes different constant

values in the far past and far future, i.e.,

f(η) =

{
fi for η ≤ ηi ,
ff for ηf ≤ η .

(2.37)

We also assume 0 < fi < ff for simplicity. For η ≤ ηi and ηf ≤ η, one may unambiguously

distinguish the positive/negative frequency modes and expand the fermion field as done

in eq. (2.35).

Suppose that we start with the vacuum state which is erased by annihilation operators

defined at η ≤ ηi. Let f(η) evolve until f = ff at ηf ≤ η. Then in general the positive

(negative) frequency mode defined at η ≤ ηi is no longer purely positive (negative) for

ηf ≤ η, rather it will contain contributions with positive and negative frequencies. This

leads to the particle production. There are two mechanisms of fermion production in our

setup. The first is an adiabatic process: particle production for an arbitrary slow evolution

of f(η), i.e., |f ′/f2| → 0. To estimate this process, we do not have to specify the evolution

of f(η) as long as it is slow enough. We will see in section 3 that this is related to particle

production through the chiral anomaly. Note that the anomaly equation depends only on

the difference of fi and ff regardless of the details of f(η) [see eq. (3.1) below]. The second

process is non-adiabatic: particle production associated with a finiteness of f ′. In reality,

the time derivative of f is finite, e.g., in chromo-natural inflation, we expect |f ′/f2| ∼ H/f̂ .

As an instructive example, we will fix the evolution of f(η) as indicated by chromo-natural

inflation and evaluate the associated fermion production in section 4.1.

3 Chiral anomaly and eta invariant

In this section we compute fermion production in a homogeneous and isotropic gauge field

background. We can compute the fermion production explicitly by solving the equations

– 11 –



J
H
E
P
0
3
(
2
0
1
9
)
1
1
1

of motion, given in eqs. (2.26)–(2.28). We will find the resulting particle production to

be asymmetric, δ〈QR〉 = −δ〈QL〉. This channel of fermion production is sourced by the

Chern-Pontryagin density, and must obey the chiral anomaly equation (2.7),

∂η
〈
QL/R

〉
= ∓ vol (R3)

1

8π2
∂η
(
f3
)
↔ δ

〈
QL/R

〉
= ∓ vol (R3)

1

8π2

(
f3
f − f3

i

)
, (3.1)

where we have inserted eq. (2.11). Our primary goal of this section is to see by explicit

computation that this is indeed the case. The anomaly equation (3.1) is not sensitive to

how f(η) evolves, depending only on the initial and final values fi and ff . Thus in this

section we will assume an adiabatic evolution of f(η) to single out the production via the

chiral anomaly by suppressing the production related to a finiteness of f ′ (which will be

discussed in section 4).

For an arbitrary slow evolution of f(η), we cannot create particles on the gapped

modes. Hence one may concentrate on the gapless mode, namely the lowest mode ψ
(−,−)
L/R

for f > 0 (see figure 1), and just count the number of states that cross zero energy, as was

done in the U(1) case in [13]. In our case, however, this is not the whole story. In fact,

we will explicitly show that this process explains only 1/6 of the anomaly equation8 [see

eqs. (3.14) and (3.15)]. In order to correctly reproduce the anomaly equation, we must also

take into account a contribution from the vacuum, whose meaning we will clarify in the

following. For this purpose, we have to first go back to the definition of the fermion current

and investigate how the current must be regularized. We will clarify the conditions under

which the vacuum contribution is relevant as well as the essential differences between the

abelian analysis [13] and this work in the end of this section.

3.1 Regularization and eta invariant

First of all, we discuss a proper regularization of the fermion current. Generally speaking,

the fermion current is divergent, and hence we have to regulate it. In particular, the

regularization should not spoil the underlying symmetry of the theory. Here we take

the gauge and CP symmetries as our guiding principle. The CP symmetry is crucial

to understand why it is insufficient to count the number of zero-crossing modes (which

corresponds to taking a normal ordering and simply dropping the divergence) to reproduced

the anomaly equation.

CP transformation. Since this theory never violates CP explicitly, we shall require

that the regularization does not spoil the transformation law,

CP
[
QL/R(η)

]
Λ̂

(CP )−1 = −
[
QL/R(η)

]
Λ̂
, (3.2)

where Λ̂ is a physical cutoff which is taken to be infinity in the end. See eq. (A.11) for the CP

transformation of the fermion current. Anticipating that the CP transformation exchanges

the particles and anti-particles, let us redefine the fermion current by combining ψ and

8For a fundamental representation. See appendix C for a general representation.
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ψ† antisymmetrically, i.e., JµL/R = [ψ,PL/Rγ
µψ]/2. This redefinition is always possible by

adding a total derivative to the action. Inserting eq. (2.35), the associated charge now reads

[QH ]Λ̂ =

∫
d3k

(2π)3

1

2

{∑
p

R

(
|ω(p)
H |
aΛ̂

)[
b
(p) †
H,k b

(p)
H,k − b

(p)
H,kb

(p) †
H,k

]
−
∑
n

R

(
|ω(n)
H |
aΛ̂

)[
d

(n) †
H,−kd

(n)
H,−k − d

(n)
H,−kd

(n) †
H,−k

]}
, (3.3)

for H = L,R. Here the superscript p (n) labels the positive (negative) energy mode whose

energy is ω
(p)
H (ω

(n)
H ). The regulator function R(x) is smooth and rapidly approaches to

zero. Note that the energy spectrum, ω
(p)
H and ω

(n)
H , respects the gauge invariance, and

hence so does the regularization R(|ω(•)
H |/aΛ̂).

Let us see that this regularized current fulfills the required property (3.2). To show

this, we first have to understand how the creation and annihilation operators transform

under CP . Inserting the mode expansion given in eq. (2.35) into the definition of the CP

transformation, CP ψL/R(x) (CP )−1 = ∓(iσ2)TC ψ
†
L/R(xP ) with (xP ) = (η,−x), one can

obtain these transformation laws. Note that we are considering here a CP transformation

or the fermion ψ on a given background f , which spontaneously breaks CP -invariance.

Effectively, this means that performing a CP transformation amounts to flipping the sign

of f in all operators in the fermion equation of motion. In particular, this implies the

following transformation law for the dispersion relation:

ω
(−1)
H

CP←→ −ω(+1)
H , ω

(0;1)
H

CP←→ −ω(0;2)
H , (3.4)

for H = L/R. Consequently the CP transformation exchanges the creation/annihilation

operator between the particle and anti-particle as follows:

CP

[
θ

(
k − f

2

)
b
(−1)
L,k + θ

(
f

2
− k
)
d

(−1) †
L,−k

]
(CP )−1 = d

(+1)
L,−k ,

CP d
(+1)
L,−k (CP )−1 = θ

(
k − f

2

)
b
(−1)
L,k + θ

(
f

2
− k
)
d

(−1) †
L,−k ,

CP d
(0)
L,−k (CP )−1 = b

(0)
L,k , CP b

(0)
L,k (CP )−1 = d

(0)
L,−k , (3.5)

for the left-handed fermion; and

CP

[
θ

(
k − f

2

)
d

(−1) †
R,−k + θ

(
f

2
− k
)
b
(−1)
R,k

]
(CP )−1 = b

(+1) †
R,k ,

CP b
(+1) †
R,k (CP )−1 = θ

(
k − f

2

)
d

(−1) †
R,−k + θ

(
f

2
− k
)
b
(−1)
R,k ,

CP b
(0)
R,k (CP )−1 = d

(0)
R,−k , CP d

(0)
R,−k (CP )−1 = b

(0)
R,k , (3.6)

for the right-handed fermion. Here we have explicitly written down the Heaviside theta

function to avoid confusions. By using them we confirm that the regularized current

respects the required property (3.2). See appendix B.1 for details.
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Normal ordering and eta invariant. The physical meaning of this regularization pro-

cedure becomes clear once we rewrite eq. (3.3) by singling out the normal ordering term

by re-writing bb† = b†b− 1 = : bb† :−1 (and analogous for the operator d),

QH = lim
Λ̂→∞

[QH ]Λ̂ = :QH : + lim
Λ̂→∞

vol (R3)

∫
d3k

(2π)3

[
−1

2

∑
λ

sgn
(
ω

(λ)
H

)
R

(
|ω(λ)
H |
aΛ̂

)]
,

(3.7)

where sgn (x) is a sign function and λ = {(+1), (−1), (0; 1), (0; 2)} labels the energy eigen-

states. Here we have written the limit Λ̂ → ∞ explicitly. The first term, : QH :, counts

the number of particles minus anti-particles as usual. If we naively apply normal ordering,

only this term remains. The second term is known as the eta invariant which measures

the contribution from vacuum [17, 18], which without regularization is ill-defined. It is

now clear that we must include the eta invariant in our computation unless the spectrum

is identical between the positive and negative energy states, |ω(p)
H | = |ω

(n)
H |. Obviously, in

our setup, this is not the case (see figure 1) and hence we must keep the eta invariant to

reproduce the anomaly equation. At the end of this section we discuss in more detail the

conditions under which we can ignore the eta invariant. Note that eq. (3.7) holds for both

helicities separately, and the total chiral charge ψ̄γ0γ5ψ is obtained as QR −QL = 2QR.

3.2 Chiral asymmetry from excitations

We first estimate the asymmetry coming from the normal ordering term. Assuming an

adiabatic evolution of f(η) from fi to ff [see eq. (2.37)], we may count the number of

states whose frequency changes from positive to negative or visa versa by just looking at

the lowest mode, ψ
(−1)
L/R e

(−1)
k (for f > 0).

Solving the equation of motion. The equation of motion for ψ
(−1)
L , given by

0 =

[
i∂η −

(
k − f(η)

2

)]
ψ

(−1)
L (η,k), (3.8)

can be solved formally as

ψ
(−1)
L (η,k) = e

−i
∫ η dη̄

(
k− f(η̄)

2

) [
θ

(
k − fi

2

)
b
(−1)
L,k + θ

(
fi
2
− k
)
d

(−1) †
L,−k

]
. (3.9)

Here we take the initial condition to match the vacuum state erased by the annihilation

operators defined at η ≤ ηi, i.e., 〈: QH :〉 = 0 for η ≤ ηi. In other words, this solution

becomes

ψ
(−1)
L = e

−i
(
k− fi

2

)
η
θ

(
k − fi

2

)
b
(−1)
L,k + θ

(
fi
2
− k
)
e
i
(
fi
2
−k
)
η
d

(−1) †
L,−k , (3.10)

for η ≤ ηi. Eventually, for ηf ≤ η, this reads

ψ
(−1)
L = e

−i
(
k−

ff
2

)
(η−ηf)e−iδ

{
θ

(
k−

ff
2

)
b
(−1)
L,k︸ ︷︷ ︸
B

(−1)
L,k

+θ

(
ff
2
−k
) [

θ

(
k− fi

2

)
b
(−1)
L,k +d

(−1)†
L,−k

]
︸ ︷︷ ︸

D
(−1)†
L,−k

}
,

(3.11)
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where δ ≡
∫ ηf
ηi

dη̄ (k − f(η̄)/2). Here B
(†)
L,k and D

(†)
L,−k are annihilation (creation) operators

defined at ηf ≤ η. They cannot erase the initial state, which implies particle or anti-particle

production. This solution can easily be understood from figure 1. When f grows, some of

the positive energy states, which are vacant, becomes negative energy states. This is why

the creation operator of anti-particles, D†, contains the annihilation operator of particles,

b, of the initial state.

Chiral asymmetry. Taking the expectation value of : QL : in the initial vacuum state,

we arrive at

δQ
(e)
L ≡ 〈:QL(ηf ) :〉 − 〈:QL(ηi) :〉 (3.12)

= −vol (R3)

∫
d3k

(2π)3
θ

(
k − fi

2

)
θ

(
ff
2
− k
)

(3.13)

=
1

6
×
[
−vol (R3)

1

8π2

(
f3
f − f3

i

)]
. (3.14)

We note that in this computation, δQ
(e)
L only depends on the zero of the dispersion relation,

as well as on the change in the background gauge field, f3
f − f3

i . A similar computation

yields the asymmetry of right-handed fermion as

δQ
(e)
R =

1

6
×
[
vol (R3)

1

8π2

(
f3
f − f3

i

)]
. (3.15)

It is instructive to reproduce the sign of eqs. (3.14) and (3.15) from figure 1. As can be

seen from the left panel of figure 1, if f grows (note that f > 0), the positive energy states,

which are vacant, become the negative energy states. Thus, anti-particles are generated

for the left-handed fermion, i.e., δQ
(e)
L < 0. For the right-handed fermion, on the other

hand, the negative energy states, which are occupied, turn into the positive energy states.

Namely, particle production occurs for the right-handed fermion, i.e., δQ
(e)
R > 0.

By comparing eqs. (3.14) and (3.15) with eq. (3.1), we conclude that the particle or

anti-particle excitations account for just 1/6 of the asymmetry predicted by the anomaly

equation. If we take a spin-j representation of SU(2) in stead, the factor 1/6 becomes

j3/(j + 1)(j + 1/2)j.9 See appendix C for details. For later convenience, we rewrite

eqs. (3.14) and (3.15) in terms of number density. The number density generated via the

chiral anomaly can be expressed as

n̄L|adiabatic = nR|adiabatic =
1

6

1

8π2
(f3
f − f3

i ) , nL|adiabatic = n̄R|adiabatic = 0 . (3.16)

9In the large j limit, the contribution only from excitations suffices to recover the anomaly equation.

This is because the spectrum becomes symmetric and hence we can ignore the eta invariant in this limit.

See the discussion in the end of this section and appendix C.
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3.3 Chiral asymmetry from the vacuum

We now move on to the asymmetry from the vacuum contribution.

Chiral asymmetry. The vacuum contribution is defined by

Q
(v)
H ≡ lim

Λ̂→∞
vol (R3)

∫
d3k

(2π)3

[
−1

2

∑
λ

sgn
(
ω

(λ)
H

)
R

(
|ω(λ)
H |
aΛ̂

)]
. (3.17)

First, suppose that f(η) takes a constant value. Assuming for instance a Gaussian regula-

tor, R(x) = e−x
2
, one may compute Q

(v)
H explicitly by plugging in the dispersion relations

given in eqs. (2.29), (2.30), (2.31), and (2.32). Moreover, as expected, we can show that the

result is independent of a concrete form of the regulator if it fulfills appropriate properties.

See appendix B.2 for an explicit proof. A straightforward calculation leads to

Q
(v)
L/R =

5

6
×
[
∓vol (R3)

1

8π2
f3

]
. (3.18)

Next we consider the evolution given in eq. (2.37). In the end, we are interested in a

difference of Q
(v)
H between its initial and final value. Since eq. (3.18) applies to both η ≤ ηi

and ηf ≤ η, we obtain

δQ
(v)
L/R ≡ Q

(v)
L/R(ηf )−Q(v)

L/R(ηi) (3.19)

=
5

6
×
[
∓vol (R3)

1

8π2

(
f3
f − f3

i

)]
. (3.20)

Summing the contributions from the excitations and vacuum [eqs. (3.14), (3.15)

and (3.20)], we finally correctly reproduce the anomaly equation given in eq. (3.1):

δ
〈
QL/R

〉
= δQ

(e)
L/R + δQ

(v)
L/R = ∓vol (R3)

1

8π2

(
f3
f − f3

i

)
. (3.21)

This clearly shows that the vacuum contribution is indispensable. The asymmetric fermion

production in a homogeneous isotropic non-abelian gauge field background can thus be

understood at the microphysical level as the sum of two effects: (i) production of the

lowest lying, gapless fermion mode due to a time-dependent dispersion relation and (ii) a

vacuum contribution due to an asymmetric energy spectrum of all fermion modes.

When is the vacuum contribution important? In hindsight, it is easy to see the

conditions under which we need to take into account the vacuum contribution. The vacuum

contribution is described by the eta invariant:

Q
(v)
H ≡ lim

Λ̂→∞
vol (R3)

∫
d3k

(2π)3

[
−1

2

∑
λ

sgn
(
ω

(λ)
H

)
R

(
|ω(λ)
H |
aΛ̂

)]
. (3.22)
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We can omit the vacuum contribution if one of the following two conditions is fulfilled:

(1) initial and final gauge configurations are identical, or (2) positive and negative frequency

modes are symmetric. Below we briefly explain each of these conditions.

(1): We are computing a difference between the initial and the final states. If the initial

and final gauge field configurations are equivalent up to gauge transformation, the

initial and final spectra must be the same, resulting in the cancellation of the con-

tribution from the eta invariant. Indeed this is the case in [13, 16], and hence is the

reason why they reproduce the anomaly equation without taking into account the

vacuum contribution. In our case the magnetic fields are different in the initial and

final states, indicating that they are not connected by the gauge transformation.

(2): If the positive and negative frequency modes are symmetric, the eta invariant vanishes

by definition.

4 Application to chromo-natural inflation

In the previous section we considered an adiabatic evolution of the gauge field configura-

tion, and reproduced the anomaly equation correctly by paying special attention to the

vacuum contribution. There we ignored the gapped modes because they are not produced

in the adiabatic limit. Now we are in a position to discuss non-adiabatic contribution

to the fermion production, i.e., production of the gapped modes. For this purpose we

need to specify the evolution of f(η). We will take f(η) = f̂/(−Hη) motivated by the

chromo-natural inflation (see section 2.2). Our goal is to determine how many particles

are generated during the evolution of the gauge field background from fi at ηi to ff at ηf .

4.1 Fermion production in chromo-natural inflation

Robustness of the anomaly equation. We first confirm that the asymmetric particle

production, as described by the anomaly equation, is not modified by the specific non-

adiabatic evolution of f . This discussion also clarifies that the modes ψ
(+1)
L/R and ψ

(−1)
L/R do

not participate in any additional fermion production besides the one described in section 3.

The equations of motion for the highest and lowest modes in eqs. (2.26) and (2.27) are

given by

0 =

[
i∂η +

(
λk +

ξ

2(−η)

)]
ψ

(λ)
L (η,k) , (4.1)

for λ = +1,−1 where we have taken ξ ' f̂/H [defined in eq. (2.18)] to be constant. Again

we discuss only the left-handed fermion to avoid unnecessary complications. It is clear that

the argument presented below holds for the right-handed fermion, too. Eq. (4.1) can be

solved analytically, leading to

ψ
(+1)
L (η,k) = eikη−i

ξ
2

ln(−kη)d
(+1) †
L,−k , (4.2)

ψ
(−1)
L (η,k) = e−ikη−i

ξ
2

ln(−kη)

[
θ

(
k +

ξ

2ηi

)
b
(−1)
L,k + θ

(
−ξ
2ηi
− k
)
d

(−1) †
L,−k

]
. (4.3)
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Here we have chosen the initial conditions to match the vacuum solution at ηi. At η = ηf ,

we find the positive energy modes for k > ξ/(−2ηf ) and negative energy modes for k <

ξ/(−2ηf ), in other words, part of the initially positive mode has become negative:10

ψ
(+1)
L (ηf ,k) = eikηf−i

ξ
2

ln(−kηf ) d
(+1)†
L,−k︸ ︷︷ ︸
D

(+1)†
L−,k

, (4.4)

ψ
(−1)
L (ηf ,k) = e−ikηf−i

ξ
2

ln(−kηf )

{
θ

(
k+

ξ

2ηf

)
b
(−1)
L,k︸ ︷︷ ︸
B

(−1)
L,k

+θ

(
−ξ
2ηf
−k
)[

θ

(
k+

ξ

2ηi

)
b
(−1)
L,k +d

(−1)†
L,−k

]
︸ ︷︷ ︸

D
(−1)†
L,−k

}
.

(4.5)

Eq. (4.5) is essentially the same as eq. (3.11), and hence the computation performed in the

previous section holds. Recall that the vacuum contribution to the chiral anomaly is deter-

mined by the difference between the final and initial values, independently of the evolution

of f(η). Therefore, the chiral anomaly [eq. (3.21)] is reproduced as expected. Moreover,

eqs. (4.4) and (4.5) show that there is no additional fermion production associated with

f ′ 6= 0 from ψ
(−1)
L and ψ

(+1)
L .

Pair production from f ′ 6= 0 In section 3, we neglected fermion production from the

mixed modes ψ
(0;1)
L/R and ψ

(0;2)
L/R since they are gapped and cannot be generated adiabatically.

In the following we extend our discussion to account for effects induced by f ′ 6= 0, focusing

on the specific example f = f̂/(−Hη). We will see that this leads to fermion production

in the mixed modes ψ
(0;1)
L/R and ψ

(0;2)
L/R .

Let us go back to the equations of motion given in eq. (2.28). If f is constant, one may

diagonalize the equation by the rotation matrix in eq. (2.33). To single out the effect of

non-vanishing f ′, it is more convenient to go to this basis. Then, the equation of motion

becomes

0 =

[
i∂η −

(
ω

(0;1)
L/R (η)

ω
(0;2)
L/R (η)

)
+
i

2

kξ

k2η2 + ξ2

(
−1

1

)](
ψ

(0;1)
L/R (η,k)

ψ
(0;2)
L/R (η,k)

)
. (4.6)

The third term in the parenthesis encodes the effects coming from f ′ 6= 0. If one drops

this term, the results of the previous section 3 are recovered. To make this property more

explicit, we further define(
ψ

(0;1)
L/R (η,k)

ψ
(0;2)
L/R (η,k)

)
≡

 e
−i
∫ η ω(0;1)

L/R ϕ
(0;1)
L/R (η,k)

e
−i
∫ η ω(0;2)

L/R ϕ
(0;2)
L/R (η,k)

 . (4.7)

In terms of ϕL/R, one may easily see the effect of f ′ 6= 0. For f ′ = 0, inserting eq. (4.7) in

eq. (4.6) leads to a simple plane wave solution with constant amplitude ϕ. For f ′ 6= 0, the

10The positive and negative modes at a given time are defined by the Hamiltonian for the fermion at that

time. Note that it does not contain any time derivatives.
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time evolution of ϕ is determined by

∂ηϕ
(0;1)
L/R =

1

2

kξ

k2η2 + ξ2
e∓2iΘ ϕ

(0;2)
L/R , ∂ηϕ

(0;2)
L/R = −1

2

kξ

k2η2 + ξ2
e±2iΘ ϕ

(0;1)
L/R , (4.8)

where Θ ≡
∫ η

dη̄
√
k2 + ξ2/η̄2. Note that this equation is invariant under

ϕ
(0;1)
L/R 7→ −ϕ

(0;2)
L/R

∗
, ϕ

(0;2)
L/R 7→ ϕ

(0;1)
L/R

∗
. (4.9)

We take the left-handed fermion for concreteness in the following. Pick up one solution

ϕ
(•)
L,+ which has a positive frequency initially, i.e., ϕ

(0;1)
L,+ = 0 and ϕ

(0;2)
L,+ = 1 for η = ηi.

(Recall that at ηi, the corresponding frequencies are given by eqs. (2.31) and (2.32), and

for any given helicity, there is always a positive and a negative frequency mode, see figure 1.)

Clearly, if we neglect f ′, ϕ
(•)
L,+ keeps its initial value, i.e., there is no particle production.

Due to the non-vanishing f ′, a part of the positive mode however turns into the negative

one, leading to ϕ
(0;1)
L,+ (ηf ) 6= 0. We may read off the Bogolyubov coefficients from this

solution:11

αL,k(ηf ) ≡ ϕ(0;2)
L,+ (ηf ,k) , βL,k(ηf ) ≡ ϕ(0;1)

L,+ (ηf ,k) . (4.10)

Instead of taking the positive initial frequency mode, one may consider the negative one,

ϕ
(•)
L,−, fulfilling ϕ

(0;1)
L,− = 1 and ϕ

(0;2)
L,− = 0 for η = ηi. Thanks to eq. (4.9), this solution can

also be obtained from ϕ
(0;2)
L,− = −ϕ(0;1)

L,+

∗
and ϕ

(0;1)
L,− = ϕ

(0;2)
L,+

∗
. This completes the following

Bogolyubov transformation which connects the creation/annihilation operators between ηi
and ηf :

B
(0)
L,k = αL,kb

(0)
L,k − β

∗
L,kd

(0) †
L,−k , D

(0) †
L,−k = βL,kb

(0)
L,k + α∗L,kd

(0) †
L,−k . (4.11)

Because of 〈B(0)
L,k
†B

(0)
L,k〉 = 〈D(0)

L,k
†D

(0)
L,k〉 = vol (R3) |βL,k|2, it describes pair production of

particles and anti-particles. Moreover, one may show that αL,k = αR,k and βL,k = −βR,k,

meaning that the number of produced particles is identical for the left-handed and right-

handed fermions, i.e., |βL,k|2 = |βR,k|2. Note that the Bogolyubov coefficients transform

under CP as α 7→ α and β 7→ −β.

One may solve eq. (4.8) numerically to get the Bogolyubov coefficients. Figure 2 shows

the numerical result of |β| as a function of k. We also display an approximate solution for

|β| which is given by,

|βH,k(ηf )| ∼



k(−ηi)
2ξ

1√
1 + 4ξ2

for k �
ξ

−ηi
,

c

4ξ
for

ξ

−ηi
� k �

ξ

−ηf
,

ξ

4k2η2
f

for
ξ

−ηf
� k ,

(4.12)

11The Bogolyubov transformation is a linear transformation acting on the creation/annihilation operators,

B = αb − β∗d† and D† = α∗d† + βb, canonically normalized so that the Bogolyubov coefficients fulfill

|α|2 + |β|2 = 1.
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k(
f)|
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i

Figure 2. The Bogolyubov coefficient βH,k for ξ = 5 and ηf = 10−2ηi. The blue line is obtained by

numerically solving eq. (4.8) without the Born approximation (see appendix D). The gray dashed

lines are the approximate solution (4.12).

where H = L,R and c ∼ 0.4. The asymptotic behaviour for small and large k is derived in

appendix D, the intermediate range is a rough approximation of the full numerical result

with the value of c extracted from the latter. Using this approximation, we estimate the

number density of fermions created by this process. The comoving number density at ηf
can be approximated with

nL|pair = n̄L|pair = nR|pair = n̄R|pair =

∫
d3k

(2π)3

∣∣βL/R,k

∣∣2 ∼ a3 × 1

24π2
ξH3 , (4.13)

where we have dropped an O(1) factor arising from the integration of eq. (4.12). Note that

the physical number density is obtained from n̂ = n/a3, and is hence constant (for constant

ξ) in a gauge field background described by eq. (2.20). Compared to the production via

the chiral anomaly [eq. (3.16)], the number density is suppressed by 1/ξ2:

n̄L|adiabatic = nR|adiabatic ' a
3 × 1

48π2
ξ3H3 . (4.14)

Here we have assumed ηi � ηf (< 0) and denoted a = a(ηf ).

4.2 Induced current and backreaction to chromo-natural inflation

Up to here, we have discussed how the fermions are generated in a gauge field background

as found in chromo-natural inflation. In this section we discuss the backreaction of these

produced fermions on the gauge field.

For this purpose, let us go back to the equation of motion for the background gauge

field. Expanding the gauge field as Aai = fδai + δAai, one may write down an effective

action for the homogeneous gauge field, f . The interaction with the fermion is imprinted

in the current, i.e., ψ /A
a
T aψ ⊃ f(ψ†Lσ ·TψL−ψ†Rσ ·TψR). Differentiating the action with

respect to f , one may derive the equation of motion including the backreaction from the
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current:

f ′′(η) + 2f3(η)− 2ξ

(−η)
f2(η) =

g2

3 vol (R3)

∫
d3x

(〈
ψ†Lσ · TψL

〉
−
〈
ψ†Rσ · TψR

〉)
.

(4.15)

The expectation value of the currents on the right-hand side contains two contributions.

Firstly, there are vacuum fluctuations. Since a non-vanishing field value of f changes the

dispersion relation of fermions, it affects the running of the gauge coupling, analogous to

the Coleman-Weinberg correction to the effective potential [39]. The second contribution

is due to fermions produced from the background gauge field. Once produced they move

in the background gauge field, leading to an induced current. We first estimate these

contributions to the gauge field equation of motion, and then discuss their implications.

Regularization of the current. Since the current which couples to the gauge field

diverges, we have to regulate it, similar to the situation encountered in section 3. The

operator must be regularized in a way that does not spoil the symmetry of the theory, in

particular the current must be CP odd as can be seen from CP : f 7→ −f . For this purpose,

analogous to the discussion given in section 3, we redefine the current by antisymmetrizing

it, i.e.,12

KL/R ≡ ±
∫

d3x
1

2
[ψ†L/R,σ · TψL/R] . (4.16)

Let us first write down the current at η > ηi in terms of creation/annihilation operators

defined at η, i.e., B and D. For simplicity, we write down the current of the left-handed

fermion only. It is straightforward to obtain its counterpart for the right-handed fermion.

Introducing a regulator function R such that the regularized currents remains CP -odd,

the regularized current can be expressed as

[KL]Λ̂≡
∫

d3k

(2π)3

{
−R

(
|ω(+1)

L |
aΛ̂

)
1

2

[
D

(+1)†
L,−k D

(+1)
L,−k−

1

2
vol(R3)

]

+R

(
|ω(−1)

L |
aΛ̂

)
1

2

[
B

(−1)†
L,k B

(−1)
L,k −D

(−1)†
L,−k D

(−1)
L,−k−sgn

(
ω

(−1)
L

) 1

2
vol(R3)

]

−R

(
|ω(0;1)

L |
aΛ̂

)(
f√

k2+f2
− 1

2

)[
D

(0)†
L,−kD

(0)
L,−k−

1

2
vol(R3)

]

+R

(
|ω(0;2)

L |
aΛ̂

)(
−f√
k2+f2

− 1

2

)[
B

(0)†
L,k B

(0)
L,k−

1

2
vol(R3)

]

+
k

2
√
k2+f2

[
R

(
|ω(0;1)

L |
aΛ̂

)
+R

(
|ω(0;2)

L |
aΛ̂

)](
e2iΘB

(0)†
L,k D

(0)†
L,−k+H.c.

)}
.

(4.17)

12Note that we have used the special structure of the background gauge field to contract gauge and spatial

indices here. In a slight abuse of notation, we refer to the resulting scalar object as ‘current’.
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Here we have used the fact that σ·T takes the following form in the basis which diagonalizes

the Hamiltonian for the fermion:

(σ̃ · T ) =


1
2

1
2

f√
k2+f2

− 1
2

k√
k2+f2

k√
k2+f2

−f√
k2+f2

− 1
2


· · · (+1)

· · · (−1)

· · · (0; 1)

· · · (0; 2)

. (4.18)

Here the tilde denotes that we have taken the energy eigenbasis for the fermion. Recalling

that the CP transformation exchanges the creation/annihilation operators [see (B.5)],

the positive/negative energies [see (B.4)], and changes the sign of the gauge field

CP : f 7→ −f , one can show explicitly that the regularized current is CP odd, i.e.,

CP : [KL/R]Λ̂ 7→ −[KL/R]Λ̂.

To clarify the physical meaning, we divide this regularized current into contributions

from vacuum and excitations, as in section 3. One may factor out the normal ordering

term as follows:

KH = lim
Λ̂→∞

[KH ]Λ̂ = :KH : + lim
Λ̂→∞

[K
(v)
H ]Λ̂ , (4.19)

with

[K
(v)
H ]Λ̂≡ εH vol(R3)

∫
d3k

(2π)3

{[
−1

2

∑
λ

(σ̃ ·T )λλ sgn
(
ω

(λ)
H

)
R

(
|ω(λ)
H |
aΛ̂

)]
(4.20)

+
k

2
√
k2+f2

[
R

(
|ω(0;1)
H |
aΛ̂

)
+R

(
|ω(0;2)
H |
aΛ̂

)](
−e2iΘα∗H,kβH,k+H.c.

)}
, (4.21)

where we define εH = ± for H = L/R. Here we have used the Bogolyubov coefficients

defined in eq. (4.11) and Θ introduced below eq. (4.8). The first term in eq. (4.19) counts

the contribution from particles and anti-particles while the second term stems from vacuum

fluctuations. Contrary to the case of the chiral anomaly, the vacuum contribution actually

diverges. However we will see that this divergence is renormalized by the running of the

gauge coupling, which eventually leads to the Coleman-Weinberg-type correction to the

effective potential for f .

Vacuum contribution to the current. Here we estimate the vacuum contribution

[K
(v)
H ]Λ̂, breaking it down further into two terms to clarify its origin. On the one hand,

eq. (4.20) arises due to the asymmetric fermion energy levels, analogous to (3.17). Assum-

ing for instance a Gaussian regulator, one may compute this integral explicitly, finding a

logarithmically divergent term as Λ̂→∞. On the other hand, eq. (4.21) becomes non-zero

only if we take into account the time evolution of f , since the Bogolyubov coefficient, β,

vanishes for f = const, see section 4.1. To compute this contribution, we need to evaluate

α and β for eq. (4.21). Since we are interested in its divergence structure, we can take the

large momentum limit, i.e., k(−η)� ξ. We obtain in this limit (see appendix D)

αL,k ' 1 , βL,k '
ξe−2ikη

4

(
i

k2η2
− 1

k3η3

)
, Θ ' kη . (4.22)
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Inserting this into eq. (4.21), one immediately finds a logarithmic divergence. Summing

the logarithmically divergent terms coming from eq. (4.20) and (4.21), we find

[K
(v)
L ]Λ̂ ' vol (R3)× 1

16π2
ln

(
f̂2

Λ̂2

) (
f ′′ + 2f3

)
, (4.23)

with the term proportional to f3 arising from eq. (4.20) while the f ′′ term arises from

eq. (4.21). Here note that f̂ = f/a. The corresponding right-handed current can be

obtained from replacing f with −f . We would like to emphasize that this expression (4.23)

does not depend on ξ. In fact, one may derive the same equation for f(η) = c/(−η) with c

being an arbitrary constant. Moreover, we expect this form must hold for a more general

evolution of f(η) because it is related to the renormalization of the gauge coupling as we

discuss below.

Let us show that this divergence can be renormalized by the gauge coupling. Inserting

eq. (4.23) in the equation of motion for the gauge field, one obtains

0 = −

[
1

g2
Λ̂

− NF

48π2
ln

(
f̂2

Λ̂2

)](
f ′′ + 2f3

)
+

aφ̇

4π2fa
f2 +

1

3 vol (R3)

∑
H

εH 〈:KH :〉 , (4.24)

with gΛ̂ being a bare coupling. NF counts the number of Weyl fermions and hence NF = 2

in our case (after including the right-handed fermion as well). Recall that the running of

the gauge coupling can be expressed as

1

g2
µ̂

=
1

g2
Λ̂

+

[
22

3
− 2NF

3
T (r)

]
1

16π2
ln

(
µ̂2

Λ̂2

)
. (4.25)

The first factor of 22/3 comes from the gauge boson loop. Since we are interested in the

UV-divergence induced by the fermions, we may concentrate on the second term.13 It is

clear that, for T (2) = 1/2, the divergence in gΛ̂ and ln(f̂2/Λ̂2) cancels out, resulting in the

usual logarithmic dependence on the renormalization scale µ̂. Though we do not explicitly

compute the gauge boson loop in this paper because our main focus is on the contribution

from fermions, this suggests that the full one-loop result is obtained after the inclusion

of the gauge boson loop. Namely one may replace the bare coupling in eq. (4.25) by the

running gauge coupling,

1

g2
Λ̂

+

[
22

3
− 2NF

3
T (r)

]
1

16π2
ln

(
f̂2

Λ̂2

)
=

1

g2
µ̂

+

[
22

3
− 2NF

3
T (r)

]
1

16π2
ln

(
f̂2

µ̂2

)
. (4.26)

This shows that perturbation theory is under control if we use the running coupling eval-

uated at µ̂ ' |f̂ |. As a result, we arrive at the following equation of motion:

0 = − 1

g2
f̂

(
f ′′ + 2f3

)
+

aφ̇

4π2fa
f2 +

1

3 vol (R3)

∑
H

εH 〈:KH :〉 , (4.27)

13Perturbations around the homogeneous gauge field background of CNI are studied in [20–23, 28].

The most significant effects arise from a tachyonic tensor mode, which receives a temporary exponential

enhancement in the gaue field background (2.10).
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where gf̂ denotes the running gauge coupling evaluated at µ̂ ' |f̂ |. At this stage one can

see the reason why we only have logarithmic divergences and why we can nicely combine

them as eq. (4.23): the gauge symmetry restricts the structure of divergence so that it can

be renormalized solely by the gauge coupling.

Induced current. Now we are in a position to discuss the induced current from the

fermionic particles/anti-particles generated from the background gauge field. The induced

current for the left-handed fermion is given by

〈:KL :〉 =

∫
d3k

(2π)3

[
1

2

〈
B

(+1) †
L,k B

(+1)
L,k +B

(−1) †
L,k B

(−1)
L,k −D

(−1) †
L,k D

(−1)
L,k

〉
(4.28)

−

(
f√

k2 + f2
− 1

2

)〈
D

(0) †
L,k D

(0)
L,k

〉
+

(
−f√
k2 + f2

− 1

2

)〈
B

(0) †
L,k B

(0)
L,k

〉]
. (4.29)

One may evaluate the expectation values by using the relation between the creation/anni-

hilation operators defined at η and those defined at η = ηi, which is given in eqs. (4.4), (4.5),

and (4.11). The first line [eq. (4.28)] counts the contribution from the chiral anomaly

which gives

〈:KL :〉adiabatic = −vol (R3)
1

96π2
f3 . (4.30)

Here we take fi = f(ηi) → 0. For right-handed fermions, one may obtain it from just

replacing f with −f in eq. (4.30). The second line gives the induced current from pair

production:

〈:KL :〉pair = −
∫

d3k

(2π)3

2f√
k2 + f2

|βL,k|2 ' −vol (R3)
c̃

96π2
f ′′ , (4.31)

where numerically find that c̃ ' 0.6. The result for right-handed fermions is obtained from

just replacing f with −f . Note again that the expression (4.31) does not depend on ξ, i.e.,

the same equation can be derived for f(η) = c/(−η) with c being an arbitrary constant.

Contrary to the vacuum contribution, we do have to assume the specific time evolution,

f(η) ∝ 1/(−η), which is justified a posteriori as we will see soon.

Backreaction. We can estimate the effect of the generated fermions by inserting

eqs. (4.30) and (4.31) into eq. (4.27). The equation of motion including the backreac-

tion can be expressed as

0 =
(
Z f ′′ + 2f3

)
− 2ξeff

(−η)
f2 , (4.32)

where

ξeff =
g2
f̂ ,eff

φ̇

8π2faH
,

1

g2
f̂ ,eff

≡ 1

g2
f̂

+
NF

288π2
, Z ≡

1 + c̃NF
288π2 g

2
f̂

1 + ÑF
288π2 g

2
f̂

. (4.33)
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Before concluding, let us examine the validity of the key assumption of f(η) ∝ 1/(−η),

under which this expression was derived. We have to check whether the attractor solution

of this form still exists in eq. (4.32), namely with the backreaction. Interestingly, the equa-

tion keeps almost the same form except for ξeff and Z. As a result, following the discussion

given below eq. (2.19) (see also ref. [28]), one may find the condition under which the

asymptotic solution of the form f(η) ∝ 1/(−η) exists and is stable against perturbations.

After some manipulation, we find f(η) = c2,effξeff/(−η) with c2,eff =
(

1 +
√

1− 4Z/ξ2
eff

)
/2

under the condition ξeff > 2
√
Z, which is smoothly connected to the attractor solution

without the backreaction (2.19) for ξeff → ξ and Z → 1. This a posteriori justifies our

self-consistency, namely the use of the specific form of f(η) ∝ 1/(−η) in eq. (4.31) as long

as ξeff is large enough.

In summary, a vacuum contribution to the total induced current can simply be inter-

preted as the running of the gauge coupling, evaluated at the background field value f̂ ,

while a contribution due to chiral fermion excitations tries to decrease the value of the

global minimum for f(η) by decreasing ξeff. The fermion excitations may further shift

the balance between the kinetic and the potential term of f(η), altering the relaxation

time to reach this global minimum. However, unless the gauge coupling or the number of

fermionic degrees of freedom are very large, the backreaction of the fermion excitations on

the background is negligible. This is because we expect Z ' 1 and ξeff ' ξ in this case,

indicating that the asymptotic behavior is well approximated by the solution without the

backreaction, i.e. f(η) ' ξ/(−η).

5 Conclusion

In this paper we study fermion production in a homogeneous and isotropic non-abelian

gauge field background. Since such a gauge field background spontaneously breaks CP

invariance, we may expect both pair production of fermions (analogous to the Schwinger

effect in the presence of a strong electric field) as well as a chiral fermion production

channel, resulting in an asymmetric production of left- and right-handed fermions. The

latter is directly tied to the chiral anomaly equation, which predicts the generation of chiral

charge in gauge field backgrounds with a non-vanishing Chern-Pontryagin density.

Solving the fermion equation of motion, we see how the chiral anomaly equation is ex-

plicitly realized from two contributions. Firstly, one mode of the fermion doublet smoothly

connects particle and anti-particle states, leading to an asymmetric production of left- and

right-handed particles, resulting in the generation of a chiral charge. Secondly, the asym-

metry between the dispersion relations of left- and right-handed particles, present in the

entire spectrum, results in a non-vanishing vacuum contribution to the chiral charge if the

gauge field background is time-dependent. Together these two contributions provide the

microphysical explanation for the total chiral charge predicted by the anomaly equation.

This implies that the naive prescription of normal ordering fails to reproduce the correct

result in this case.

The pair production of particles is on the contrary a non-adiabatic process, sensitive

to the details of the time-evolution of the gauge field background. The homogeneous and

– 25 –



J
H
E
P
0
3
(
2
0
1
9
)
1
1
1

isotropic non-abelian gauge field background spontaneously breaks the invariance under

global transformations contained in the SU(2) gauge group and the symmetry of spatial

rotations down to a diagonal subgroup. The helicity eigenstates of this subgroup form

pairs which mix under the time-evolution of the system. This mixing leads to the pair

production of fermions, encoded in non-vanishing Bogolyubov coefficients.

Together, these two fermion production channels fully describe the generation of

fermions in a non-abelian gauge field background. The microphysical interpretation pro-

vided here allows to extract information which is not contained in the anomaly equa-

tion, such as the rate of pair production and the momentum distribution of the generated

fermions. This enables us to compute the backreaction of the fermions on the gauge field

background, arising through the induced fermion current. Here again, special care is re-

quired to correctly account for the vacuum contribution which in the end amounts to replac-

ing the bare coupling constant with the running gauge coupling. We find this backreaction

to be small, unless the gauge coupling or the number of fermions is very large. This is a

key difference with respect to the abelian counterpart of this study, where the backreaction

of the fermions on the gauge field background was found to be very important [16].

The results presented here shed light on the understanding of the chiral anomaly and

fermion pair production in non-abelian gauge theories. This has immediate consequences

for settings which predict strong non-abelian gauge fields. One example is chromo-natural

inflation, where the (pseudo)scalar field driving cosmic inflation is coupled to the Chern-

Pontryagin density. More generally, strong non-abelian gauge fields should be expected in

the hot primordial plasma in the early Universe or in the quark-gluon-plasma of heavy ion

collisions, and the processes described above will contribute to the thermalization of this

plasma. Finally, the chiral charge generated from an adiabatically changing gauge field

background may play a role in the generation of the matter antimatter asymmetry of the

Universe. We leave the exploration of these exciting questions to future work.
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A Notations and conventions

Metric. We take the sign convention (ηµν) = Diag (+,−,−,−). The line element in the

Friedmann-Lemâıtre-Robertson-Walker metric with vanishing curvature is

ds2 = gµν dxµdxν = dt2 − a2(t) dx2 = a2(η)
(
dη2 − dx2

)
. (A.1)

We work in conformal coordinates, (η,x), unless otherwise stated. The vierbein on this

background is given by

eαµ = aδαµ , eµα =
1

a
δµα. (A.2)

The totally antisymmetric tensor is defined so that ε0123 = −ε0123 = +1.
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Gamma matrices. We adopt the chiral representation for the gamma matrices in

Minkowski spacetime:

γ0 =

(
0 1

1 0

)
, γ =

(
0 σ

−σ 0

)
, γ5 =

(
−1 0

0 1

)
. (A.3)

This fulfills the Clifford algebra in Minkowski spacetime

{γµ, γν} = 2ηµν . (A.4)

The gamma matrices on the curved background are obtained from

γ̂µ = eµαγ
α =

γµ

a
, γ̂µ = eαµγα = aγµ. (A.5)

One may easily see that they satisfy the Clifford algebra on the curved background

{γ̂µ, γ̂ν} = 2gµν . (A.6)

CP transformation. We define the CP transformation acting on the Weyl fermions

as follows:

CP ψL/R(x) (CP )−1 = ∓(iσ2)TC ψ
†
L/R(xP ), (A.7)

where (xP ) = (η,−x) and σ2 denotes the second Pauli matrix. TC defines a similarity

transformation which fulfills TC(−T a∗)T−1
C = T a. The current which couples to the SU(2)

gauge field transforms as

CP ψ†L/R(x) (∓σ)T aψL/R(x) (CP )−1 = ∓ψL/R(xP )
(
σ2σσ2

) (
T−1
C T aTC

)
ψ†L/R(xP )

= −ψ†L/R(xP ) (∓σ)T aψL/R(xP ). (A.8)

To make the gauge interaction invariant under CP , we have

CP Aa(x) (CP )−1 = −Aa(xP ). (A.9)

This indicates the CP transformation of the homogeneous field, Aai = −fδai :

CP f(η) (CP )−1 = −f(η). (A.10)

The CP transformation acting on the fermion current yields

CP
(
J0

L/R(x),JL/R(x)
)

(CP )−1

= ψL/R(xP )
(
σ2(1,∓σ)σ2

)
ψ†L/R(xP ) = ψ†L/R(xP ) (−1,∓σ)ψL/R(xP )

=
(
−J0

L/R(xP ),JL/R(xP )
)
. (A.11)
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B Regularization of the fermion current

B.1 Eta invariant and regularization

Here we show explicitly that our regularization for the fermion current does not spoil the

CP symmetry. To avoid unnecessary complications, we discuss the left-handed fermion

only. The application to the right-handed fermion is straightforward.

Let us start with how the CP transformation defined in eq. (A.7) acts on ψL, assuming

a constant value for f . In this case one may expand the wave function as follows (see

eqs. (2.35)):

ψL(x) =

∫
d3k

(2π)3/2
eik·x

{
e−iω

(+1)
L ηd

(+1) †
L,−k e

(+1)
k

+

[
e−iω

(−1)
L η θ

(
f

2
− k
)
d

(−1) †
L,−k + e−iω

(−1)
L η θ

(
k − f

2

)
b
(−1)
L,k

]
e

(−1)
k

+ e−iω
(0;1)
L ηd

(0) †
L,−ke

(0;1)
k + e−iω

(0;2)
L ηb

(0)
L,ke

(0;2)
k

}
, (B.1)

where the energy spectrum is given by

ω
(+1)
L =−

(
k+

f

2

)
, ω

(−1)
L = k− f

2
, ω

(0;1)
L =−

√
k2+f2+

f

2
, ω

(0;2)
L =

√
k2+f2+

f

2
.

Note that d
(−1)
L,−k and b

(−1)
L,k must appear together with the Heaviside theta function since

they are only defined for k < f/2 and k > f/2 respectively. For a notational simplicity, we

usually omit this theta function unless otherwise stated. First of all, the basis transforms

under the CP as follows:

CP e
(−1)
k (CP )−1 = −iσ2TC e

(+1) ∗
k , CP e

(+1)
k (CP )−1 = −iσ2TC e

(−1) ∗
k ,

CP e
(0;1)
k (CP )−1 = −iσ2TC e

(0;2) ∗
k , CP e

(0;2)
k (CP )−1 = −iσ2TC e

(0;1) ∗
k . (B.2)

To see this, we have used the definition of the basis given in eq. (2.36) and the following

properties

−iσ2χ
(±)
k

∗
= χ

(∓)
k , TCt

(±)
k

∗
= t

(∓)
k , (B.3)

which can be shown from (k̂ · σ)χ
(±)
k = ±χ(±)

k , (k̂ · T )t
(±)
k = ±(1/2)t

(±)
k , σ2σ∗σ2 = −σ,

and TCT
∗T−1

C = −T . Moreover, using CP : f 7→ −f , we obtain the CP transformation

of the energy levels,

ω
(−1)
L

CP←→ −ω(+1)
L , ω

(0;1)
L

CP←→ −ω(0;2)
L . (B.4)
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Equipped with eqs. (B.2) and (B.4), we can see the following transformation law by insert-

ing the mode expansion (B.1) into the definition of the CP transformation (A.7):

CP

[
θ

(
k − f

2

)
b
(−1)
L,k + θ

(
f

2
− k
)
d

(−1) †
L,−k

]
(CP )−1 = d

(+1)
L,−k ,

CP d
(+1)
L,−k (CP )−1 = θ

(
k − f

2

)
b
(−1)
L,k + θ

(
f

2
− k
)
d

(−1) †
L,−k ,

CP d
(0)
L,−k (CP )−1 = b

(0)
L,k , CP b

(0)
L,k (CP )−1 = d

(0)
L,−k . (B.5)

Here we have recovered the Heaviside theta function to avoid confusions. A similar com-

putation yields the following transformation law for the right-handed fermion:

CP

[
θ

(
k − f

2

)
d

(−1) †
R,−k + θ

(
f

2
− k
)
b
(−1)
R,k

]
(CP )−1 = b

(+1) †
R,k ,

CP b
(+1) †
R,k (CP )−1 = θ

(
k − f

2

)
d

(−1) †
R,−k + θ

(
f

2
− k
)
b
(−1)
R,k ,

CP b
(0)
R,k (CP )−1 = d

(0)
R,−k , CP d

(0)
R,−k (CP )−1 = b

(0)
R,k . (B.6)

Now we are in a position to obtain explicitly the CP transformation of the regularized

charge [eq. (3.3)]:

[QL]Λ̂ =

∫
d3k

(2π)3

1

2

{∑
p

R

(
|ω(p)
L |
aΛ̂

)[
b
(p) †
L,k b

(p)
L,k − b

(p)
L,kb

(p) †
L,k

]
−
∑
n

R

(
|ω(n)
L |
aΛ̂

)[
d

(n) †
L,−kd

(n)
L,−k − d

(n)
L,−kd

(n) †
L,−k

]}

=

∫
d3k

(2π)3

{
−R

(
|ω(+1)

L |
aΛ̂

)[
d

(+1) †
L,−k d

(+1)
L−k −

1

2
vol (R3)

]
(B.7)

+R

(
|ω(−1)

L |
aΛ̂

)[
b
(−1) †
L,k b

(−1)
L,k − d

(−1) †
L,−k d

(−1)
L,−k − sgn

(
ω

(−1)
L

) 1

2
vol (R3)

]
(B.8)

−R

(
|ω(0;1)

L |
aΛ̂

)[
d

(0) †
L,−kd

(0)
L−k −

1

2
vol (R3)

]
(B.9)

+R

(
|ω(0;2)

L |
aΛ̂

)[
b
(0) †
L,k b

(0)
L,k −

1

2
vol (R3)

]}
(B.10)

Here (p) runs over (−1) and (0; 2) while (n) does (+1), (−1), and (0; 1) (see figure 1). By

using eqs. (B.4) and (B.5), one can easily confirm (B.7)
CP↔ −(B.8) and (B.9)

CP↔ −(B.10),

which means

CP [QL]Λ̂ (CP )−1 = − [QL]Λ̂ . (B.11)
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B.2 Independence of regularization

Here we show that the result given in eq. (3.18) does not depend on the explicit functional

form of the regularization. We assume that R(0) = 1, the n-th derivative R(n) is regular

at x = 0, and R(n) drops rapidly for x→∞, namely faster than a polynomial of x. Let us

start with the definition of the eta invariant:

Q
(v)
H ≡ lim

Λ̂→∞
[Q

(v)
H ]Λ̂ ≡ lim

Λ̂→∞
vol (R3)

∫
d3k

(2π)3

[
−1

2

∑
λ

sgn
(
ω

(λ)
H

)
R

(
|ω(λ)
H |
aΛ̂

)]
. (B.12)

By inserting eqs. (2.29)–(2.32), one finds

[Q
(v)
L/R]Λ̂ = ∓vol (R3)

f3

4π2

{
− 1

12
+

1

ε3

∫
dxx2

[
R
(
x− ε

2

)
−R

(
x+

ε

2

)
+R

(√
x2 + ε2 +

ε

2

)
−R

(√
x2 + ε2 − ε

2

)]}
, (B.13)

where ε = f/(aΛ̂) � 1 and x = εk/f . This integral gives a meaningful result only after

the regularization.

To see how R regulates this integral, we separate the integral into two parts: (i)

0 ≤ x ≤ Mε � 1 and (ii) Mε ≤ x with M � 1. One may take M to be arbitrary large

while keeping Mε� 1 for a sufficiently small ε. Thus, in the regime (ii), one may expand

the integral by ε/x ≤ 1/M � 1 and just take the leading part, which gives

1

ε3

∫
Mε

dxR′′(x)
ε3x

2
=
[
R′(x)

x

2

]∞
Mε
−
[R(x)

2

]∞
Mε

ε→0−→ 1

2
. (B.14)

Here we have used the following property of R: xR′(x) → 0 for x → 0; xR′(x) → 0,

R(x) → 0 for x → ∞; and R(0) = 1. In the regime (i), one may expand the integrand by

both ε and x because of x ≤Mε� 1 and ε� 1. Then one obtains

1

ε3

∫ Mε

0
dxx2

[
εR′′(0)

(√
x2 + ε2 − x

)]
+O(ε2) =

M3ε

3
R′′(0) +O(ε2)

ε→0−→ 0 . (B.15)

Therefore we get the following result without specifying the regulator R:

Q
(v)
L/R =

5

6
×
[
∓vol (R3)

f3

8π2

]
. (B.16)

C General representations of fermions

Here we summarize results for fermions in a general spin-j representation of the SU(2) gauge

group. The gauge field background (2.10) spontaneously breaks the SU(2) gauge group and

the SO(3) group of spatial rotations down to the diagonal SO(3) subgroup. With respect

to the axis specified by the momentum vector ~k (taken here w.l.o.g. to be the z-direction),

this symmetry is further reduced to the SO(2) symmetry associated with helicity. The

corresponding conserved charge is the projection of the total spin onto the z-axis, s/2 +m,
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with s/2 = ±1/2 denoting the intrinsic spin of the fermion under spatial rotations and

m = −j,−(j − 1), . . . j accounting for the z-component of the spin j associated with the

SU(2) gauge symmetry. The results for the fermion doublet (fundamental representation)

discussed in the main text are obtained by setting j = 1/2.14 The generalization to higher

representations presented here helps to clarify the conceptual structure of the computations

in the main text.

Equation of motion. The fermion equation of motion is given by eq. (2.22):

0 = [i∂η ± σ · k ± f(η)σ · T ]ψL/R(η,k) . (C.1)

For a spin-j representation, the eigenbases of the spin and gauge degrees of freedom are

given by (
k̂ · σ

)
χ

(±)
k = ±χ(±)

k ,
(
k̂ · T

)
t
(m)
k = mt

(m)
k , (C.2)

where m runs over −j,−j + 1, . . . , j. The wave function is expanded as

ψL/R(η,k) =
∑

s=±,m
ψ

(s,m)
L/R (η,k)χ

(s)
k t

(m)
k . (C.3)

The equation of motion for each mode is given by

0 = [i∂η±(k+jf(η))]ψ
(+,j)
L/R (η,k) , (C.4)

0 = [i∂η∓(k−jf(η))]ψ
(−,−j)
L/R (η,k) , (C.5)

0 =

[
i∂η±k

(
1

−1

)
±f(η)

(
m−1

√
(j+1/2)2−(m−1/2)2√

(j+1/2)2−(m−1/2)2 −m

)](
ψ

(+,m−1)
L/R

ψ
(−,m)
L/R

)
,

(C.6)

where m now runs −j + 1,−j + 2, . . . , j. Note that the diagonal part of the SU(2) and

SO(3) remains as a symmetry, resulting in the conservation of s/2 + m. Thus we can

understand the above structure by realizing that only the modes with the same value of

s/2 +m mix with each other.

Energy eigenbasis for constant f . For constant f , the wave functions satisfy the

plane wave solution with the dispersion relations given by

ω
(+̃)
L/R = ∓(k + jf) , (C.7)

ω
(−̃)
L/R = ±(k − jf) , (C.8)

ω
(m̃;1)
L/R = ∓

(√
(k + m̃f)2 + f2 (̃2 − m̃2)− f

2

)
, (C.9)

ω
(m̃;2)
L/R = ±

(√
(k + m̃f)2 + f2 (̃2 − m̃2) +

f

2

)
, (C.10)

14For notational ease, we use m 7→ 2m in the main text.
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for m̃ = −̃+1,−̃+2, . . . , ̃−1, where we have defined m̃ ≡ m−1/2 and ̃ ≡ j+1/2 which

refer to the total spins. The orthogonal matrix that diagonalizes the m̃ modes is given by

Om̃(κ) =

(
cos θm̃ sin θm̃
− sin θm̃ cos θm̃

)
, tan [2θm̃(κ)] =

√
̃2 − m̃2

κ+ m̃
, (C.11)

so that (
ψ

(m̃;1)
L/R (η,k)

ψ
(m̃;2)
L/R (η,k)

)
= Om̃ (k/f)

(
ψ

(+,m−1)
L/R (η,k)

ψ
(−,m)
L/R (η,k)

)
. (C.12)

The wave function for the left-handed fermion expanded in terms of creation and annihi-

lation operators is given by

ψL = e−iω
(+̃)
L ηd

(+̃)
L,−k

†
e

(+̃)
k + e−iω

(−̃)
L η

[
θ (k − jf) b

(−̃)
L,k + θ (jf − k) d

(−̃)
L,−k

†
]
e

(−̃)
k

+

̃−1∑
m̃=−̃+1

[
e−iω

(m̃;1)
L ηd

(m̃)
L,−k

†
e

(m̃;1)
k + e−iω

(m̃;2)
L ηb

(m̃)
L,k e

(m̃;2)
k

]
, (C.13)

where the energy eigenbasis is defined as

e
(+̃)
k ≡ χ(+)

k t
(+j)
k , e

(−̃)
k ≡ χ(−)

k t
(−j)
k ,

(
e

(m̃;1)
k

e
(m̃;2)
k

)
= Om̃ (k/f)

(
χ

(+)
k t

(m−1)
k

χ
(−)
k t

(m)
k

)
, (C.14)

for m̃ = −̃+ 1, . . . , ̃− 1. A similar expansion holds for the right-handed fermion.

CP transformation. The basis transforms under the CP as

CP e
(−̃)
k (CP )−1 = −iσ2TC e

(+̃) ∗
k , CP e

(+̃)
k (CP )−1 = −iσ2TC e

(−̃) ∗
k ,

CP e
(m̃;1)
k (CP )−1 = −iσ2TC e

(−m̃;2) ∗
k , CP e

(m̃;2)
k (CP )−1 = −iσ2TC e

(−m̃;1) ∗
k , (C.15)

where we have used the fact that O†m̃(κ) = O−m̃(−κ). The frequency is transformed as

ω
(−̃)
H

CP←→ −ω(+̃)
H , ω

(m̃;1)
H

CP←→ −ω(−m̃;2)
H . (C.16)

The CP transformation of the creation and annihilation operators is accordingly given by

CP
[
θ (k − jf) b

(−̃)
L,k + θ (jf − k) d

(−̃) †
L,−k

]
(CP )−1 = d

(+̃)
L,−k ,

CP d
(+̃)
L,−k (CP )−1 = θ (k − jf) b

(−̃)
L,k + θ (jf − k) d

(−̃) †
L,−k ,

CP d
(m̃)
L,−k (CP )−1 = b

(−m̃)
L,k , CP b

(m̃)
L,k (CP )−1 = d

(−m̃)
L,−k , (C.17)

and

CP
[
θ (k − jf) d

(−̃) †
R,−k + θ (jf − k) b

(−̃)
R,k

]
(CP )−1 = b

(+̃) †
R,k ,

CP b
(+̃) †
R,k (CP )−1 = θ (k − jf) d

(−̃) †
R,−k + θ (jf − k) b

(−̃)
R,k ,

CP b
(m̃)
R,k (CP )−1 = d

(−m̃)
R,−k , CP d

(m̃)
R,−k (CP )−1 = b

(−m̃)
R,k , (C.18)
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where we have written the Heaviside theta explicitly to avoid confusions. The current is

antisymmetrized in the same way as the main text to respect the CP transformation:

[QH ]Λ̂ =

∫
d3k

(2π)3

1

2

{∑
p

R

(
|ω(p)
H |
aΛ̂

)[
b
(p) †
H,k b

(p)
H,k − b

(p)
H,kb

(p) †
H,k

]
−
∑
n

R

(
|ω(n)
H |
aΛ̂

)[
d

(n) †
H,−kd

(n)
H,−k − d

(n)
H,−kd

(n) †
H,−k

]}
. (C.19)

We can divide it into the contributions from the excitation and the vacuum in the same

way as before, resulting in

QH = lim
Λ̂→∞

[QH ]Λ̂ = :QH : + lim
Λ̂→∞

vol (R3)

∫
d3k

[
−1

2

∑
λ

sgn
(
ω

(λ)
H

)
R

(
|ω(λ)
H |
aΛ̂

)]
.

(C.20)

Chiral asymmetry. The computation of the chiral asymmetry proceeds completely anal-

ogous to section 3. The contribution from the excitation is given by

δQ
(e)
L/R = ∓vol (R3)

j3

6π2

(
f3
f − f3

i

)
, (C.21)

while the contribution from the vacuum is given by

δQ
(v)
L/R = ∓vol (R3)

4π2

(
T (2j+1)− 2

3
j3

)(
f3
f − f3

i

)
, (C.22)

such that

δQ
(e)
L/R + δQ

(v)
L/R = ∓vol (R3)

T (2j+1)

4π2

(
f3
f − f3

i

)
. (C.23)

Thus it correctly reproduces the anomaly equation for a general spin-j representation.

Pair production in CNI background. The production in the modes with m̃ = ±̃ is

not affected by the non-adiabatic evolution f ′ 6= 0. Thus we concentrate on the modes with

m̃ = −̃+ 1, . . . , ̃− 1, i.e., the mixed modes. In the following we assume, as in section 4,

that f = ξ/(−η). Then the equation of motion in the energy eigenbasis for constant f is

given by

0 =

[
i∂η −

(
ω

(m̃;1)
L/R

ω
(m̃;2)
L/R

)
+ i (∂ηθm̃)

(
−1

1

)](
ψ

(m̃;1)
L/R (η,k)

ψ
(m̃;2)
L/R (η,k)

)
, (C.24)

∂ηθm̃ =
k

2f

√
̃2 − m̃2

(k/f + m̃)2 + ̃2 − m̃2

f ′

f
. (C.25)

Once we define (
ψ

(m̃;1)
L/R

ψ
(m̃;2)
L/R

)
≡

e−i ∫ η ω(m̃;1)
L/R ϕ

(m̃;1)
L/R

e
−i
∫ η ω(m̃;2)

L/R ϕ
(m̃;2)
L/R

 , (C.26)
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they satisfy

∂ηϕ
(m̃;1)
L/R = (∂ηθm̃) e∓2iΘm̃ϕ

(m̃;2)
L/R , ∂ηϕ

(m̃;2)
L/R = − (∂ηθm̃) e±2iΘm̃ϕ

(m̃;1)
L/R , (C.27)

where Θm̃ =
∫ η
dη
√

(k + m̃f)2 + f2(̃2 − m̃2) . From now we concentrate on the left-

handed fermion for concreteness. The Bogolyubov transformation is given by

B
(m̃)
L,k = α

(m̃)
L,k b

(m̃)
L,k − β

(m̃)
L,k

∗
d

(m̃)
L,−k

†
, D

(m̃)
L,k

†
= β

(m̃)
L,k b

(m̃)
L,k + α

(m̃)
L,k

∗
d

(m̃)
L,−k

†
, (C.28)

where the coefficients are defined as

αL,k (ηf ) ≡ ϕ(m̃;2)
L,+ (ηf ,k) , βL,k (ηf ) ≡ ϕ(m̃;1)

L,+ (ηf ,k) , (C.29)

with ϕ
(m̃;1)
L,+ = 0 and ϕ

(m̃;2)
L,+ = 1 at η = ηi. The Bogolyubov coefficient is estimated as

∣∣∣β(m̃)
H

∣∣∣ ∼



k(−ηi)
2̃ξ

√
1− m̃2/̃2

1 + 4̃2ξ2
for k � ̃ξ

−ηi
,

c

4̃ξ

√
1− m̃2/̃2

(1 + m̃/̃)3
for

̃ξ

−ηi
� k � ̃ξ

−ηf
,

̃ξ

4(kηf )2

√
1− m̃2

̃2
for k � ̃ξ

−ηf
,

(C.30)

with c ∼ 0.4. The behavior for the large and small momentum limit is understood ana-

lytically (see appendix D), while the middle one is estimated by numerical computation.

Compared to the production via the chiral anomaly, the number density is suppressed

by 1/̃2ξ2.

Induced current. The regularized left-handed induced current for a general spin-j rep-

resentation is given by

[KL]Λ̂≡
∫

d3k

(2π)3

{
−R

(
|ω(+̃)

L |
aΛ̂

)
j

[
D

(+̃)†
L,−kD

(+̃)
L,−k−

1

2
vol(R3)

]

+R

(
|ω(−̃)

L |
aΛ̂

)
j

[
B

(−̃)†
L,k B

(−̃)
L,k −D

(−̃)†
L,−kD

(−̃)
L,−k−sgn

(
ω

(−̃)
L

) 1

2
vol(R3)

]

+
̃−1∑

m̃=−̃+1

[
−R

(
|ω(m̃;1)

L |
aΛ̂

)(
̃2+m̃(k/f)√

(k/f+m̃)2+̃2−m̃2
− 1

2

)[
D

(m̃)†
L,−kD

(m̃)
L,−k−

1

2
vol(R3)

]

+R

(
|ω(m̃;2)

L |
aΛ̂

)(
− ̃2+m̃(k/f)√

(k/f+m̃)2+̃2−m̃2
− 1

2

)[
B

(m̃)†
L,k B

(m̃)
L,k −

1

2
vol(R3)

]

+
k

2f

√
̃2−m̃2

(k/f+m̃)2+̃2−m̃2

[
R

(
|ω(m̃;1)

L |
aΛ̂

)
+R

(
|ω(m̃;2)

L |
aΛ̂

)](
e2iΘm̃B

(m̃)†
L,k D

(m̃)†
L,−k+H.c.

)]}
.

(C.31)
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The Bogolyubov coefficient relevant for the computation of the divergent part is given by

αL,k ' 1 , βL,k '
̃ξe−2ikη

4

√
1− m̃2

̃2

(
i

k2η2
− 1

k3η3

)
, Θm̃ ' kη . (C.32)

Then we can compute the divergent part of the vacuum contribution in exactly the same

way as the main text:

[K
(v)
L ]Λ̂ ' vol (R3)× T (2j+1)

8π2
ln

(
f̂2

Λ̂2

) (
f ′′ + 2f3

)
. (C.33)

It again describes the running of the gauge coupling from the fermion loop. The induced

current from the excitations is given by

〈:KL :〉 =

∫
d3k

(2π)3

{
j
〈
B

(+̃) †
L,k B

(+̃)
L,k +B

(−̃) †
L,k B

(−̃)
L,k −D

(−̃) †
L,k D

(−̃)
L,k

〉
̃−1∑

m̃=−̃+1

[
−

(
̃2 + m̃(k/f)√

(k/f + m̃)2 + ̃2 − m̃2
− 1

2

)〈
D

(m̃) †
L,k D

(m̃)
L,k

〉

+

(
− ̃2 + m̃(k/f)√

(k/f + m̃)2 + ̃2 − m̃2
− 1

2

)〈
B

(m̃) †
L,k B

(m̃)
L,k

〉]}
. (C.34)

There are two contributions as before. The contribution from the anomaly is

〈:KL :〉anomaly = −vol (R3)
j4

6π2
f3 . (C.35)

The contribution from the pair production is

〈:KL :〉pair ∼ −vol (R3)
c̃j3

12π2
f ′′ , (C.36)

where we numerically find that c̃ ∼ O(0.1) almost independent of j.15 They may affect the

dynamics of CNI for large enough j, but the gauge coupling may blow up soon for such a

large representation.

D Analytic estimation of Bogolyubov coefficients

Here we derive an analytic estimation of the Bogolyubov coefficients in the small and large

momentum limit. The latter is necessary to evaluate the structure of the divergence in our

theory. We consider a general spin-j representation in this appendix. The results for the

doublet fermions used in the main text are obtained by setting ̃ = 1 and m̃ = 0, where

̃ ≡ j + 1/2 and m̃ ≡ m − 1/2 with m being the z-component of the spin associated with

the SU(2) gauge symmetry. We will focus on the left-handed fermion just for notational

ease, but the same result is obtained for the right-handed fermion.

15The coefficient c̃ tends to change more for lower j, indicating that there are also terms proportional to

j2, j, and so on.
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The time evolution of the Bogolyubov coefficients is governed by eq. (C.27), or

∂ηβ
(m̃)
L,k = (∂ηθm̃) e−2iΘm̃α

(m̃)
L,k , ∂ηα

(m̃)
L,k = − (∂ηθm̃) e+2iΘm̃β

(m̃)
L,k , (D.1)

with m̃ = −̃+1, . . . , ̃−1, and the initial condition given by α
(m̃)
L,k (ηi) = 1 and β

(m̃)
L,k (ηi) = 0,

where

∂ηθm̃ =
k

2f

√
̃2 − m̃2

(k/f + m̃)2 + ̃2 − m̃2

f ′

f
, Θm̃ =

∫ η

ηi

dη̄
√

(k + m̃f)2 + f2(̃2 − m̃2) . (D.2)

In the following we shall work with the Born approximation α
(m̃)
L,k ' 1 which is valid for

|β(m̃)
L,k | � 1. We will check that this is indeed the case in the end of the computation.16

Then the Bogolyubov coefficient β is simply given by

β
(m̃)
L,k (ηf ) '

∫ ηf

ηi

dη (∂ηθm̃) e−2iΘm̃ . (D.3)

In the following we solve this equation in the small and large momentum limit, respectively.

Small momentum limit. In the limit k � ̃fi, we may approximate eq. (D.2) as

∂ηθm̃ '
kf ′

2f2

√
1− m̃2

̃2
, Θm̃ ' ̃

∫ η

ηi

dη̄ f . (D.4)

By taking the time evolution of f(η) as f(η) ' ξ/(−η), we easily evaluate the

integral (D.3) as ∣∣∣β(m̃)
L,k

∣∣∣ (ηf ) ' k(−ηi)
2̃ξ

√
1− m̃2/̃2

1 + 4̃2ξ2
. (D.5)

It satisfies |β(m̃)
L,k | � 1, and hence the Born approximation is self-consistent. By taking

̃ = 1 and m̃ = 0, it reproduces the upper formula in eq. (4.12).

Large momentum limit. In the limit k � ̃ff , we may approximate eq. (D.2) as17

∂ηθm̃ '
f ′

2k

√
̃2 − m̃2 , Θm̃ ' kη . (D.6)

Now it is easy to evaluate eq. (D.3). By taking f = ξ/(−η) as usual, we obtain up to the

next-to-leading order as

βL,k '
̃ξe−2ikη

4

√
1− m̃2

̃2

(
i

k2η2
− 1

k3η3

)
, (D.7)

where we have approximated k(−ηi)� 1. It again satisfies |β(m̃)
L,k | � 1, indicating that the

Born approximation is self-consistent. By taking ̃ = 1 and m̃ = 0, it reproduces the lowest

line of eq. (4.12) as well as eq. (4.22).

16We will see below that |β(m̃)
L,k | is suppressed at least by f2/k2 for the large momentum limit, thus this

approximation is enough also for the discussion of the log divergence.
17Here we ignore the next-to-leading order contribution from the combination (k+ m̃f). This is because

it just shifts the lower bound of the integration, and hence is irrelevant for the divergence.
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