Skip to main content

Scattering of wave packets with phases

A preprint version of the article is available at arXiv.

Abstract

A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

References

  1. [1]

    G.L. Kotkin, V.G. Serbo and A. Schiller, Processes with large impact parameters at colliding beams, Int. J. Mod. Phys. A 7 (1992) 4707 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    K. Melnikov, G.L. Kotkin and V.G. Serbo, Physical mechanism of the linear beam size effect at colliders, Phys. Rev. D 54 (1996) 3289 [hep-ph/9603352] [INSPIRE].

  3. [3]

    K. Melnikov and V.G. Serbo, Processes with the T channel singularity in the physical region: Finite beam sizes make cross-sections finite, Nucl. Phys. B 483 (1997) 67 [hep-ph/9601290] [INSPIRE].

  4. [4]

    E.K. Akhmedov and A. Yu. Smirnov, Paradoxes of neutrino oscillations, Phys. Atom. Nucl. 72 (2009) 1363 [arXiv:0905.1903] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    E.K. Akhmedov and J. Kopp, Neutrino oscillations: Quantum mechanics vs. quantum field theory, JHEP 04 (2010) 008 [Erratum ibid. 1310 (2013) 052] [arXiv:1001.4815] [INSPIRE].

  6. [6]

    E.K. Akhmedov and A. Yu. Smirnov, Neutrino oscillations: Entanglement, energy-momentum conservation and QFT, Found. Phys. 41 (2011) 1279 [arXiv:1008.2077] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. [7]

    M.V. Berry and N.L. Balazs, Nonspreading wave packets, Am. J. Phys. 47 (1979) 264 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw and J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A 45 (1992) 8185 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    I. Bialynicki-Birula, Particle beams guided by electromagnetic vortices: New solutions of the Lorentz, Schrödinger, Klein-Gordon and Dirac equations, Phys. Rev. Lett. 93 (2004) 020402 [physics/0403078] [INSPIRE].

  10. [10]

    V. Bagrov and D. Gitman, Non-Volkov solutions for a charge in a plane wave, Annalen Phys. 14 (2005) 467.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    G.A. Siviloglou and D.N. Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32 (2007) 979.

    ADS  Article  Google Scholar 

  12. [12]

    K. Yu. Bliokh, Y.P. Bliokh, S. Savel’ev and F. Nori, Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices, Phys. Rev. Lett. 99 (2007) 190404 [arXiv:0706.2486] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    K.Y. Bliokh, M.R. Dennis and F. Nori, Relativistic Electron Vortex Beams: Angular Momentum and Spin-Orbit Interaction, Phys. Rev. Lett. 107 (2011) 174802 [arXiv:1105.0331] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    J.P. Torres and L. Torner eds., Twisted photons. Applications of light with orbital angular momentum, Wiley-VCH, New York U.S.A. (2011).

  15. [15]

    M. Uchida and A. Tonomura, Generation of electron beams carrying orbital angular momentum, Nature 464 (2010) 737.

    ADS  Article  Google Scholar 

  16. [16]

    J. Verbeeck, H. Tian and P. Schlattschneider, Production and application of electron vortex beams, Nature 467 (2010) 301.

    ADS  Article  Google Scholar 

  17. [17]

    B.J. McMorran et al., Electron vortex beams with high quanta of orbital angular momentum, Science 331 (2011) 192.

    ADS  Article  Google Scholar 

  18. [18]

    G.A. Siviloglou, J. Broky, A. Dogariu and D.N. Christodoulides, Observation of Accelerating Airy Beams, Phys. Rev. Lett. 99 (2007) 213901.

    ADS  Article  Google Scholar 

  19. [19]

    N. Voloch-Bloch et al., Generation of electron Airy beams, Nature 494 (2013) 331.

    ADS  Article  Google Scholar 

  20. [20]

    C.W. Clark et al., Controlling neutron orbital angular momentum, Nature 525 (2015) 504.

    ADS  Article  Google Scholar 

  21. [21]

    J. Verbeeck et al., Atomic scale electron vortices for nanoresearch, Appl. Phys. Lett. 99 (2011) 203109.

    ADS  Article  Google Scholar 

  22. [22]

    V. Grillo et al., Holographic Generation of Highly Twisted Electron Beams, Phys. Rev. Lett. 114 (2015) 034801.

    ADS  Article  Google Scholar 

  23. [23]

    I.P. Ivanov and D.V. Karlovets, Detecting transition radiation from a magnetic moment, Phys. Rev. Lett. 110 (2013) 264801 [arXiv:1304.0359] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    I.P. Ivanov and D.V. Karlovets, Polarization radiation of vortex electrons with large orbital angular momentum, Phys. Rev. A 88 (2013) 043840 [arXiv:1305.6592] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    U.D. Jentschura and V.G. Serbo, Compton Upconversion of Twisted Photons: Backscattering of Particles with Non-Planar Wave Functions, Eur. Phys. J. C 71 (2011) 1571 [arXiv:1101.1206] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    U.D. Jentschura and V.G. Serbo, Generation of High-Energy Photons with Large Orbital Angular Momentum by Compton Backscattering, Phys. Rev. Lett. 106 (2011) 013001 [arXiv:1008.4788] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    I.P. Ivanov, Colliding particles carrying non-zero orbital angular momentum, Phys. Rev. D 83 (2011) 093001 [arXiv:1101.5575] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    I.P. Ivanov and V.G. Serbo, Scattering of Twisted Particles: Extension to Wave Packets and orbital helicity, Phys. Rev. A 84 (2011) 033804 [arXiv:1105.6244] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    I.P. Ivanov, Measuring the phase of the scattering amplitude with vortex beams, Phys. Rev. D 85 (2012) 076001 [arXiv:1201.5040] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    I.P. Ivanov, Creation of two vortex-entangled beams in a vortex beam collision with a plane wave, Phys. Rev. A 85 (2012) 033813 [arXiv:1110.5760] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    A. Cong et al., Airy-Bessel wave packets as versatile linear light bullets, Nature Photonics 4 (2010) 103.

    ADS  Article  Google Scholar 

  32. [32]

    J. Zhao et al., Curved singular beams for three-dimensional particle manipulation, Sci. Reports 5 (2015) 12086.

    ADS  Article  Google Scholar 

  33. [33]

    P. Zhang et al., Nonparaxial Mathieu and Weber Accelerating Beams, Phys. Rev. Lett. 109 (2012) 193901.

    ADS  Article  Google Scholar 

  34. [34]

    V.G. Bagrov and D.M. Gitman, Exact solutions of relativistic wave equations, Kluwer Academic Publ., Dordrecht Netherlands (1990).

    Book  MATH  Google Scholar 

  35. [35]

    P. Carruthers and F. Zachariasen, Quantum Collision Theory with Phase Space Distribution Functions, Rev. Mod. Phys. 55 (1983) 245 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    V.G. Bagrov, V.V. Belov A.Yu. Trifonov, Theory of spontaneous radiation by electrons in a trajectory-coherent approximation, J. Phys. A 26 (1993) 6431.

    ADS  Google Scholar 

  37. [37]

    E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. [38]

    G.B. West and D.R. Yennie, Coulomb interference in high-energy scattering, Phys. Rev. 172 (1968) 1413 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    J.R. Cudell and O.V. Selyugin, How precisely will the total cross section be measured at the LHC?, Phys. Rev. Lett. 102 (2009) 032003 [arXiv:0812.1892] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    O.V. Selyugin, The effects of the small t properties of hadronic scattering amplitude on the determination its real part, Mod. Phys. Lett. A 27 (2012) 1250113 [arXiv:1207.0600].

    ADS  Article  MATH  Google Scholar 

  41. [41]

    O.V. Selyugin, GPDs of the nucleons and elastic scattering at high energies, Eur. Phys. J. C 72 (2012) 2073 [arXiv:1201.4458] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    I.M. Dremin, Elastic scattering of hadrons, Phys.-Usp. 56 (2013) 3.

    ADS  Article  Google Scholar 

  43. [43]

    I.M. Dremin, Interaction region of high energy protons, Phys.-Usp. 58 (2015) 61.

    ADS  Article  Google Scholar 

  44. [44]

    TOTEM collaboration, G. Antchev et al., First measurement of the total proton-proton cross section at the LHC energy of \( \sqrt{s}=7 \) TeV, Europhys. Lett. 96 (2011) 21002 [arXiv:1110.1395] [INSPIRE].

  45. [45]

    TOTEM collaboration, G. Antchev et al., Luminosity-independent measurements of total, elastic and inelastic cross-sections at \( \sqrt{s}=7 \) TeV, Europhys. Lett. 101 (2013) 21004 [INSPIRE].

  46. [46]

    I.M. Dremin and V.A. Nechitailo, Elastic pp-scattering at \( \sqrt{s}=7 \) TeV with the genuine Orear regime and the dip, Phys. Rev. D 85 (2012) 074009 [arXiv:1202.2016] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    TOTEM collaboration, G. Antchev et al., Measurement of elastic pp scattering at \( \sqrt{s}=8 \) TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section, Eur. Phys. J. C 76 (2016) 661 [arXiv:1610.00603] [INSPIRE].

  48. [48]

    D.V. Karlovets, Probing phase of a scattering amplitude beyond the plane-wave approximation, Europhys. Lett. 116 (2016) 31001 [arXiv:1608.08858] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    G.R. Shin and J. Rafelski, Wigner function of polarized, localized relativistic spin 1/2 particles, Phys. Rev. A 46 (1992) 645 [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    I. Bialynicki-Birula, Relativistic Wigner functions, EPJ Web Conf. 78 (2014) 01001.

    Article  Google Scholar 

  51. [51]

    W.B. Case, Wigner functions and Weyl transforms for pedestrians, Am. J. Phys. 76 (2008) 937.

    ADS  Article  Google Scholar 

  52. [52]

    S.R. de Groot and L.G. Suttorp, Foundations of electrodynamics, North-Holland Publications, Amsterdam Netherlands (1972).

    Google Scholar 

  53. [53]

    M.A. Alonso, Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles, Adv. Opt. Photon. 3 (2011) 272.

    Article  Google Scholar 

  54. [54]

    R.P. Singh, S. Roychowdhury and V.K. Jaiswal, Wigner distribution of an optical vortex, J. Mod. Opt. 53 (2006) 1803.

    ADS  Article  MATH  Google Scholar 

  55. [55]

    R.P. Singh, S. Roychowdhury and V.K. Jaiswal, Non-axial nature of an optical vortex and Wigner function, Opt. Commun. 274 (2007) 281.

    ADS  Article  Google Scholar 

  56. [56]

    R.P. Chen, H.P. Zheng and C.Q. Dai, Wigner distribution function of an Airy beam, J. Opt. Soc. Am. A 28 (2011) 1307.

    ADS  Article  Google Scholar 

  57. [57]

    I.M. Besieris and A.M. Shaarawi, Wigner distribution function of an Airy beam: comment, J. Opt. Soc. Am. A 28 (2011) 1828.

    ADS  Article  Google Scholar 

  58. [58]

    R.P. Chen, H.P. Zheng and C.Q. Dai, Wigner distribution function of an Airy beam: reply to comment , J. Opt. Soc. Am. A 28 (2011) 1829.

    ADS  Article  Google Scholar 

  59. [59]

    V. Potoček and S.M. Barnett, Generalized ray optics and orbital angular momentum carrying beams, New J. Phys. 17 (2015) 103034.

    ADS  Article  Google Scholar 

  60. [60]

    O.I. Zavialov and A.M. Malokostov, Wigner function for free relativistic particles, Theor. Math. Phys. 119 (1999) 448 [hep-th/9812054] [INSPIRE].

    Article  MATH  Google Scholar 

  61. [61]

    J. Wenninger, Energy Calibration of the LHC Beams at 4 TeV, CERN-ATS-2013-040 (2013).

  62. [62]

    D.V. Karlovets, Electron with orbital angular momentum in a strong laser wave, Phys. Rev. A 86 (2012) 062102 [arXiv:1206.6622] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    J.P. Torres, A. Alexandrescu and L. Torner, Quantum spiral bandwidth of entangled two-photon states, Phys. Rev. A 68 (2003) 050301.

    ADS  Article  Google Scholar 

  64. [64]

    R. Zambrini and S.M. Barnett, Quasi-intrinsic angular momentum and the measurement of its spectrum, Phys. Rev. Lett. 96 (2006) 113901.

    ADS  Article  Google Scholar 

  65. [65]

    D.V. Karlovets, Gaussian and Airy wave packets of massive particles with orbital angular momentum, Phys. Rev. A 91 (2015) 013847 [arXiv:1408.2509] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    D.V. Karlovets, G.L. Kotkin and V.G. Serbo, Scattering of wave packets on atoms in the Born approximation, Phys. Rev. A 92 (2015) 052703.

    ADS  Article  Google Scholar 

  67. [67]

    A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature 412 (2001) 313.

    ADS  Article  Google Scholar 

  68. [68]

    V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Quantum electrodynamics, Pergamon, Oxford U.K. (1982).

    Google Scholar 

  69. [69]

    J.A. van Kan et al., Proton beam writing nanoprobe facility design and first test results, Nucl. Instrum. Meth. A 645 (2011) 113.

    ADS  Article  Google Scholar 

  70. [70]

    F. Watt et al., The National University of Singapore high energy ion nano-probe facility: Performance tests, Nucl. Instrum. Meth. B 210 (2003) 14.

    ADS  Article  Google Scholar 

  71. [71]

    I.P. Ivanov, D. Seipt, A. Surzhykov and S. Fritzsche, Elastic scattering of vortex electrons provides direct access to the Coulomb phase, Phys. Rev. D 94 (2016) 076001 [arXiv:1608.06551] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    EHS-RCBC collaboration, J.L. Bailly et al., An impact parameter analysis of proton proton elastic and inelastic interactions at 360-GeV/c, Z. Phys. C 37 (1987) 7 [INSPIRE].

  73. [73]

    V. Kundrát and M. Lokajíček, High-energy scattering amplitude of unpolarized and charged hadrons, Z. Phys. C 63 (1994) 619 [INSPIRE].

  74. [74]

    J. Romero et al., Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement, Phys. Rev. A 86 (2012) 012334.

    ADS  Article  Google Scholar 

  75. [75]

    M.A. Cirone, Entanglement correlations, Bell inequalities and the concurrence, Phys. Lett. A 339 (2005) 269.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  76. [76]

    P. Carruthers and M.M. Nieto, Phase and angle variables in quantum mechanics, Rev. Mod. Phys. 40 (1968) 411 [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    S.M. Barnett and D.T. Pegg, Quantum theory of rotation angles, Phys. Rev. A 41 (1990) 3427.

    ADS  MathSciNet  Article  Google Scholar 

  78. [78]

    S. Franke-Arnold et al., Uncertainty principle for angular position and angular momentum, New J. Phys. 6 (2004) 103.

    ADS  Article  Google Scholar 

  79. [79]

    B. Jack et al., Demonstration of the angular uncertainty principle for single photons, J. Opt. 13 (2011) 064017.

    ADS  Article  Google Scholar 

  80. [80]

    D.V. Naumov and V.A. Naumov, A diagrammatic treatment of neutrino oscillations, J. Phys. G 37 (2010) 105014.

    ADS  Article  MATH  Google Scholar 

  81. [81]

    V.A. Naumov and D.S. Shkirmanov, Covariant asymmetric wave packet for a field-theoretical description of neutrino oscillations, Mod. Phys. Lett. A 30 (2015) 1550110 [arXiv:1409.4669].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. [82]

    O.M. Artamonov et al., Entanglement manifestation in spin resolved electron-electron scattering, J. Electr. Spectr. Rel. Phen. 205 (2015) 66.

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Karlovets.

Additional information

ArXiv ePrint: 1611.08302

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karlovets, D.V. Scattering of wave packets with phases. J. High Energ. Phys. 2017, 49 (2017). https://doi.org/10.1007/JHEP03(2017)049

Download citation

Keywords

  • Nonperturbative Effects
  • Precision QED