Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
De Sitter from T-branes
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Uplifting anti-D6-brane

30 December 2019

Niccolò Cribiori, Renata Kallosh, … Timm Wrase

Exact D7-brane embedding in the Pilch-Warner background

11 September 2020

Xinyi Chen-Lin & Amit Dekel

Non-supersymmetric branes

27 July 2020

Niccolò Cribiori, Christoph Roupec, … Timm Wrase

The final model building for the supersymmetric Pati–Salam models from intersecting D6-branes

16 August 2022

Weikun He, Tianjun Li, … Lina Wu

Planck 2018 and brane inflation revisited

02 January 2019

Renata Kallosh, Andrei Linde & Yusuke Yamada

Novel thick brane solutions with U(1) symmetry breaking

05 March 2021

Marzieh Peyravi, Nematollah Riazi & Francisco S. N. Lobo

Newton-Cartan D0 branes from D1 branes and integrability

19 June 2020

Dibakar Roychowdhury

On de Sitter string vacua from anti-d3-branes in the large volume scenario

29 March 2021

Chiara Crinò, Fernando Quevedo & Roberto Valandro

On brane gaugino condensates in 10d

01 April 2019

Yuta Hamada, Arthur Hebecker, … Pablo Soler

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 21 March 2016

De Sitter from T-branes

  • Michele Cicoli1,2,3,
  • Fernando Quevedo3,4 &
  • Roberto Valandro5,6,3 

Journal of High Energy Physics volume 2016, Article number: 141 (2016) Cite this article

  • 277 Accesses

  • 80 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Hidden sector D7-branes with non-zero gauge flux are a generic feature of type IIB compactifications. A non-vanishing Fayet-Iliopoulos term induced by non-zero gauge flux leads to a T-brane configuration. Expanding the D7-brane action around this T-brane background in the presence of three-form supersymmetry breaking fluxes, we obtain a positive definite contribution to the moduli scalar potential which can be used as an uplifting source for de Sitter vacua. In this way we provide a higher-dimensional understanding of known 4D mechanisms of de Sitter uplifting based on hidden sector F-terms which are non-zero because of D-term stabilisation.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation, JHEP 07 (2013) 150 [arXiv:1304.0022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type IIB Orientifold Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Collinucci, M. Kreuzer, C. Mayrhofer and N.O. Walliser, Four-modulus ‘Swiss Cheese’ chiral models, JHEP 07 (2009) 074 [arXiv:0811.4599] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Blumenhagen, S. Moster and E. Plauschinn, Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. Donagi and M. Wijnholt, Gluing Branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  17. R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Berglund and I. Garcia-Etxebarria, D-brane instantons on non-Spin cycles, JHEP 01 (2013) 056 [arXiv:1210.1221] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A.P. Braun, M. Rummel, Y. Sumitomo and R. Valandro, de Sitter vacua from a D-term generated racetrack potential in hypersurface Calabi-Yau compactifications, JHEP 12 (2015) 033 [arXiv:1509.06918] [INSPIRE].

  21. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino Condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Cremades, M.-P. Garcia del Moral, F. Quevedo and K. Suruliz, Moduli stabilisation and de Sitter string vacua from magnetised D7 branes, JHEP 05 (2007) 100 [hep-th/0701154] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing String Vacua in the Lab: From a Hidden CMB to Dark Forces in Flux Compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. L. Aparicio, D.G. Cerdeno and L.E. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. P.G. Cámara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. P.G. Cámara, L.E. Ibáñez and I. Valenzuela, Flux-induced Soft Terms on Type IIB/F-theory Matter Curves and Hypercharge Dependent Scalar Masses, JHEP 06 (2014) 119 [arXiv:1404.0817] [INSPIRE].

    Article  ADS  Google Scholar 

  34. L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, Bologna, 40126, Italy

    Michele Cicoli

  2. INFN, Sezione di Bologna, via Irnerio 46, Bologna, 40126, Italy

    Michele Cicoli

  3. ICTP, Strada Costiera 11, Trieste, 34151, Italy

    Michele Cicoli, Fernando Quevedo & Roberto Valandro

  4. DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, U.K.

    Fernando Quevedo

  5. Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, Trieste, 34151, Italy

    Roberto Valandro

  6. INFN, Sezione di Trieste, Via Valerio 2, Trieste, 34127, Italy

    Roberto Valandro

Authors
  1. Michele Cicoli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fernando Quevedo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Roberto Valandro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Roberto Valandro.

Additional information

ArXiv ePrint: 1512.04558

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cicoli, M., Quevedo, F. & Valandro, R. De Sitter from T-branes. J. High Energ. Phys. 2016, 141 (2016). https://doi.org/10.1007/JHEP03(2016)141

Download citation

  • Received: 09 January 2016

  • Revised: 05 March 2016

  • Accepted: 08 March 2016

  • Published: 21 March 2016

  • DOI: https://doi.org/10.1007/JHEP03(2016)141

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Superstring Vacua
  • D-branes
  • F-Theory
  • Flux compactifications
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.