Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sequencing BPS spectra

Abstract

This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d \( \mathcal{N}=2 \) theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].

  2. [2]

    S. Gukov, A.S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 [hep-th/0412243] [INSPIRE].

  3. [3]

    S. Gukov, Gauge theory and knot homologies, Fortsch. Phys. 55 (2007) 473 [arXiv:0706.2369] [INSPIRE].

  4. [4]

    D.E. Diaconescu, V. Shende and C. Vafa, Large-N duality, lagrangian cycles and algebraic knots, Commun. Math. Phys. 319 (2013) 813 [arXiv:1111.6533] [INSPIRE].

  5. [5]

    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].

  6. [6]

    E.S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 [math/0210213].

  7. [7]

    B. Gornik, Note on Khovanov link cohomology, math/0402266.

  8. [8]

    N.M. Dunfield, S. Gukov and J. Rasmussen, The superpolynomial for knot homologies, Exper. Math. 15 (2006) 129 [math/0505662] [INSPIRE].

  9. [9]

    J.A. Rasmussen, Some differentials on Khovanov-Rozansky homology, math/0607544.

  10. [10]

    J.A. Dixon, Calculation of BRS cohomology with spectral sequences, Commun. Math. Phys. 139 (1991) 495 [INSPIRE].

  11. [11]

    P. Bouwknegt, J.G. McCarthy and K. Pilch, BRST analysis of physical states for 2D gravity coupled to c < 1 matter, Commun. Math. Phys. 145 (1992) 541 [INSPIRE].

  12. [12]

    J. de Boer and T. Tjin, Quantization and representation theory of finite W algebras, Commun. Math. Phys. 158 (1993) 485 [hep-th/9211109] [INSPIRE].

  13. [13]

    M. Bertolini, I.V. Melnikov and M.R. Plesser, Hybrid conformal field theories, JHEP 05 (2014) 043 [arXiv:1307.7063] [INSPIRE].

  14. [14]

    K. Wong, Spectral sequences and vacua in N = 2 gauged linear quantum mechanics with potentials, arXiv:1511.05159 [INSPIRE].

  15. [15]

    R. Bott and L. Tu, Differential forms in algebraic topology, Springer Verlag, New York U.S.A. (1982).

  16. [16]

    G. Kato, The heart of cohomology, Springer Science & Business Media, The Netherlands (2006).

  17. [17]

    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

  18. [18]

    E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661 [INSPIRE].

  19. [19]

    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

  20. [20]

    H. Kim and I. Saberi, Real homotopy theory and supersymmetric quantum mechanics, arXiv:1511.00978 [INSPIRE].

  21. [21]

    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].

  22. [22]

    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465 [arXiv:1305.0533] [INSPIRE].

  23. [23]

    A. Gadde and S. Gukov, 2d index and surface operators, JHEP 03 (2014) 080 [arXiv:1305.0266] [INSPIRE].

  24. [24]

    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

  25. [25]

    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].

  26. [26]

    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

  27. [27]

    S. Gukov and M. Stošić, Homological algebra of knots and BPS states, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].

  28. [28]

    E. Gorsky, A. Oblomkov, J. Rasmussen and V. Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014) 2709 [arXiv:1207.4523] [INSPIRE].

  29. [29]

    E. Gorsky, S. Gukov and M. Stošić, Quadruply-graded colored homology of knots, arXiv:1304.3481 [INSPIRE].

  30. [30]

    L. Crane and I. Frenkel, Four-dimensional topological field theory, Hopf categories and the canonical bases, J. Math. Phys. 35 (1994) 5136 [hep-th/9405183] [INSPIRE].

  31. [31]

    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

  32. [32]

    N. Yu. Reshetikhin and V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1 [INSPIRE].

  33. [33]

    M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math/0401268].

  34. [34]

    Y. Yonezawa, Quantum (sl n ,V n ) link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69 [arXiv:0906.0220].

  35. [35]

    B. Webster, Knot invariants and higher representation theory II: the categorification of quantum knot invariants, arXiv:1005.4559.

  36. [36]

    H. Wu, A colored sl(N)-homology for links in S 3, arXiv:0907.0695.

  37. [37]

    B. Cooper and V. Krushkal, Categorification of the Jones-Wenzl projectors, Quant. Topol. 3 (2012) 139 [arXiv:1005.5117].

  38. [38]

    I. Frenkel, C. Stroppel and J. Sussan, Categorifying fractional Euler characteristics, Jones-Wenzl projector and 3j-symbols, Quant. Topol. 3 (2012) 181 [arXiv:1007.4680].

  39. [39]

    M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 [math/9908171] [INSPIRE].

  40. [40]

    M. Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045 [math/0304375].

  41. [41]

    M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008) 1387 [math/0505056].

  42. [42]

    B. Webster and G. Williamson, A geometric construction of colored HOMFLYPT homology, arXiv:0905.0486.

  43. [43]

    S. Gukov and J. Walcher, Matrix factorizations and Kauffman homology, hep-th/0512298 [INSPIRE].

  44. [44]

    S. Nawata, P. Ramadevi and Zodinmawia, Colored Kauffman homology and super-A-polynomials, JHEP 01 (2014) 126 [arXiv:1310.2240] [INSPIRE].

  45. [45]

    H. Awata, S. Gukov, P. Sulkowski and H. Fuji, Volume conjecture: refined and categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].

  46. [46]

    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].

  47. [47]

    H. Fuji, S. Gukov, M. Stošić and P. Sułkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].

  48. [48]

    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].

  49. [49]

    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

  50. [50]

    M. Aganagic and S. Shakirov, Knot homology and refined Chern-Simons index, Commun. Math. Phys. 333 (2015) 187 [arXiv:1105.5117] [INSPIRE].

  51. [51]

    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].

  52. [52]

    Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

  53. [53]

    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

  54. [54]

    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, Adv. Theor. Math. Phys. 17 (2013) 975 [arXiv:1112.5179] [INSPIRE].

  55. [55]

    T. Dimofte, M. Gabella and A.B. Goncharov, K-decompositions and 3d gauge theories, arXiv:1301.0192 [INSPIRE].

  56. [56]

    J. Yagi, 3d TQFT from 6d SCFT, JHEP 08 (2013) 017 [arXiv:1305.0291] [INSPIRE].

  57. [57]

    S. Lee and M. Yamazaki, 3d Chern-Simons theory from M5-branes, JHEP 12 (2013) 035 [arXiv:1305.2429] [INSPIRE].

  58. [58]

    C. Cordova and D.L. Jafferis, Complex Chern-Simons from M5-branes on the squashed three-sphere, arXiv:1305.2891 [INSPIRE].

  59. [59]

    H.-J. Chung, T. Dimofte, S. Gukov and P. Sułkowski, 3d-3d correspondence revisited, arXiv:1405.3663 [INSPIRE].

  60. [60]

    J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996) 315 [hep-th/9510182] [INSPIRE].

  61. [61]

    I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv:1111.6195 [INSPIRE].

  62. [62]

    S. Nawata and A. Oblomkov, Lectures on knot homology, arXiv:1510.01795 [INSPIRE].

  63. [63]

    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].

  64. [64]

    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].

  65. [65]

    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

  66. [66]

    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

  67. [67]

    E. Frenkel, S. Gukov and J. Teschner, Surface operators and separation of variables, JHEP 01 (2016) 179 [arXiv:1506.07508] [INSPIRE].

  68. [68]

    C.H. Taubes, Lagrangians for the Gopakumar-Vafa conjecture, Adv. Theor. Math. Phys. 5 (2001) 139 [math/0201219] [INSPIRE].

  69. [69]

    M. Khovanov and L. Rozansky, Virtual crossings, convolutions and a categorification of the SO(2N) Kauffman polynomial, math/0701333.

  70. [70]

    S. Chun, S. Gukov and D. Roggenkamp, Junctions of surface operators and categorification of quantum groups, arXiv:1507.06318 [INSPIRE].

  71. [71]

    I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [INSPIRE].

  72. [72]

    H. Murakami, T. Ohtsuki and S. Yamada, Homfly polynomial via an invariant of colored planar graphs, Enseign. Math. 44 (1998) 325.

  73. [73]

    J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) 082305 [hep-th/0412274] [INSPIRE].

  74. [74]

    I. Brunner, D. Roggenkamp and S. Rossi, Defect perturbations in Landau-Ginzburg models, JHEP 03 (2010) 015 [arXiv:0909.0696] [INSPIRE].

  75. [75]

    P. Seidel and R.P. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. 108 (2001) 37 [math/0001043] [INSPIRE].

  76. [76]

    L. Lewark and A. Lobb, New quantum obstructions to slicenes, arXiv:1501.07138.

  77. [77]

    D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 [math/0201043].

  78. [78]

    K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math. 171 (2007) 1 [math/0605314].

  79. [79]

    G.E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984) 267.

  80. [80]

    A. Beilinson and J. Bernstein, Localization of g-modules, Comptes Rendus Acad. Sci. Ser. I Math. 292 (1981) 15.

  81. [81]

    D.A. Vogan, The method of coadjoint orbits for real reductive groups, in Representation theory of Lie groups 8, Park City UT U.S.A. (1998), pg. 179.

  82. [82]

    D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994) 47.

  83. [83]

    R.M. Kashaev, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 [INSPIRE].

  84. [84]

    H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85 [math/9905075].

  85. [85]

    S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/0306165] [INSPIRE].

  86. [86]

    S. Garoufalidis and T. Le, The colored Jones function is q-holonomic, Geom. Topol. 9 (2004) 1253 [math/0309214].

  87. [87]

    S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monogr. 7 (2004) 291 [math/0306230].

  88. [88]

    L. Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189 [arXiv:1010.0451].

  89. [89]

    L. Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 [math/0407071].

  90. [90]

    M. Aganagic and C. Vafa, Large-N duality, mirror symmetry and a Q-deformed A-polynomial for knots, arXiv:1204.4709 [INSPIRE].

  91. [91]

    M. Aganagic, T. Ekholm, L. Ng and C. Vafa, Topological strings, D-model and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 [arXiv:1304.5778] [INSPIRE].

  92. [92]

    S. Arthamonov, A. Mironov, A. Morozov and A. Morozov, Link polynomial calculus and the AENV conjecture, JHEP 04 (2014) 156 [arXiv:1309.7984] [INSPIRE].

  93. [93]

    H. Fuji and P. Sulkowski, Super-A-polynomial, arXiv:1303.3709 [INSPIRE].

  94. [94]

    S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].

  95. [95]

    H.R. Morton and P.R. Cromwell, Distinguishing mutants by knot polynomials, J. Knot Theor. 5 (1996) 225.

  96. [96]

    S.M. Wehrli, Khovanov homology and Conway mutation, math/0301312.

  97. [97]

    E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  98. [98]

    A. Gadde, S. Gukov and P. Putrov, Walls, lines and spectral dualities in 3d gauge theories, JHEP 05 (2014) 047 [arXiv:1302.0015] [INSPIRE].

  99. [99]

    J.A. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 [math/0402131].

  100. [100]

    S. Nawata, P. Ramadevi and Zodinmawia, Colored HOMFLY polynomials from Chern-Simons theory, J. Knot Theor. 22 (2013) 1350078 [arXiv:1302.5144] [INSPIRE].

  101. [101]

    P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, Superpolynomials for toric knots from evolution induced by cut-and-join operators, JHEP 03 (2013) 021 [arXiv:1106.4305] [INSPIRE].

  102. [102]

    M. Rosso and V. Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theor. 2 (1993) 97.

  103. [103]

    Y.-Z. Huang and L. Kong, Modular invariance for conformal full field algebras, Trans. Amer. Math. Soc. 362 (2010) 3027 [math/0609570] [INSPIRE].

  104. [104]

    A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri Poincaré 13 (2012) 1873 [arXiv:1105.2012] [INSPIRE].

  105. [105]

    K. Kawagoe, On the formulae for the colored HOMFLY polynomials, arXiv:1210.7574 [INSPIRE].

  106. [106]

    K. Habiro, On the colored Jones polynomials of some simple links, Surikaisekikenkyusho Kokyuroku 1172 (2000) 34.

  107. [107]

    K. Habiro, On the quantum sl 2 invariants of knots and integral homology spheres, Geom. Topol. Monogr. 4 (2002) 55 [math/0211044].

  108. [108]

    A. Mironov, A. Morozov and A. Morozov, Evolution method and “differential hierarchy” of colored knot polynomials, AIP Conf. Proc. 1562 (2013) 123 [arXiv:1306.3197] [INSPIRE].

  109. [109]

    K. Bringmann, K. Hikami and J. Lovejoy, On the modularity of the inified WRT invariants of certain Seifert manifold, Adv. Appl. Math. 46 (2011) 86.

  110. [110]

    E. Gorsky and A. Negut, Refined knot invariants and Hilbert schemes, J. Math. Pure. Appl. 104 (2015) 403 [arXiv:1304.3328] [INSPIRE].

  111. [111]

    I.G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York U.S.A. (1995).

  112. [112]

    S. Shakirov, Colored knot amplitudes and Hall-Littlewood polynomials, arXiv:1308.3838 [INSPIRE].

  113. [113]

    A. Iqbal and C. Kozcaz, Refined Hopf link revisited, JHEP 04 (2012) 046 [arXiv:1111.0525] [INSPIRE].

  114. [114]

    P. Wedrich, Categorified sl(N) invariants of colored rational tangles, arXiv:1404.2736.

  115. [115]

    J. Batson and C. Seed, A link splitting spectral sequence in Khovanov homology, Duke Math. J. 164 (2015) 801 [arXiv:1303.6240].

  116. [116]

    B. Cooper, private communication.

  117. [117]

    A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. I. Integrability and difference equations, in Strings, gauge fields, and the geometry behind: the legacy of Maximilian Kreuzer, A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov and E. Scheidegger eds., World Scietific Publishins Co. Pte. Ltd., Singapore (2011), pg. 101 [arXiv:1112.5754].

  118. [118]

    A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid, JHEP 03 (2012) 034 [arXiv:1112.2654] [INSPIRE].

  119. [119]

    H. Itoyama, A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. III. All 3-strand braids in the first symmetric representation, Int. J. Mod. Phys. A 27 (2012) 1250099 [arXiv:1204.4785] [INSPIRE].

  120. [120]

    H. Queffelec and D. Rose, Sutured annular Khovanov-Rozansky homology, arXiv:1506.08188.

  121. [121]

    R. Gelca, On the relation between the A-polynomial and the Jones polynomial, Proc. Amer. Math. Soc. 130 (2002) 1235 [math/0004158].

  122. [122]

    S. Garoufalidis, The colored HOMFLY polynomial is q-holonomic, arXiv:1211.6388 [INSPIRE].

  123. [123]

    J. Gu, H. Jockers, A. Klemm and M. Soroush, Knot invariants from topological recursion on augmentation varieties, Commun. Math. Phys. 336 (2015) 987 [arXiv:1401.5095] [INSPIRE].

  124. [124]

    T. Dimofte and S. Gukov, Quantum field theory and the volume conjecture, Contemp. Math. 541 (2011) 41 [arXiv:1003.4808] [INSPIRE].

  125. [125]

    L. Ng AugmentationVarietiesforLinks.nb, http://www.math.duke.edu/~ng/.

  126. [126]

    J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, Comput. Probl. Abstr. Alg. (1970) 329.

  127. [127]

    M. Khovanov, Patterns in knot cohomology, I, Exper. Math. 12 (2003) 365 [math/0201306].

  128. [128]

    H. Jockers, A. Klemm and M. Soroush, Torus knots and the topological vertex, Lett. Math. Phys. 104 (2014) 953 [arXiv:1212.0321] [INSPIRE].

  129. [129]

    J.M.F. Labastida and M. Mariño, A new point of view in the theory of knot and link invariants, math/0104180 [INSPIRE].

  130. [130]

    J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys. 217 (2001) 423 [hep-th/0004196] [INSPIRE].

  131. [131]

    J.M.F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large-N, JHEP 11 (2000) 007 [hep-th/0010102] [INSPIRE].

  132. [132]

    S. Garoufalidis, P. Kucharski and P. Sulkowski, Knots, BPS states and algebraic curves, arXiv:1504.06327 [INSPIRE].

  133. [133]

    P. Paule, The concept of Bailey chains, http://www.emis.de/journals/SLC/opapers/s18paule.pdf.

  134. [134]

    N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 [arXiv:1108.1081] [INSPIRE].

  135. [135]

    D. Bar-Natan, Knot atlas, http://katlas.math.toronto.edu/wiki/Main_Page.

  136. [136]

    M. Stošić, Khovanov homology of torus links, Topol. Appl. 153 (2009) 533 [math/0606656].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Correspondence to Satoshi Nawata.

Additional information

ArXiv ePrint: 1512.07883

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gukov, S., Nawata, S., Saberi, I. et al. Sequencing BPS spectra. J. High Energ. Phys. 2016, 4 (2016). https://doi.org/10.1007/JHEP03(2016)004

Download citation

Keywords

  • Differential and Algebraic Geometry
  • Supersymmetry and Duality
  • Topological Field Theories
  • Topological Strings