Skip to main content
Log in

Non-holomorphic modular forms and SL(2,R)/U(1) superconformal field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the torus partition function of the \( {{{{\text{SL}}\left( {2,\mathbb{R}} \right)}} \left/ {{{\text{U}}(1)}} \right.} \) SUSY gauged WZW model coupled to \( \mathcal{N} = 2 \) U(1) current. Starting from the path-integral formulation of the theory, we introduce an infra-red regularization which preserves good modular properties and discuss the decomposition of the partition function in terms of the \( \mathcal{N} = 2 \) characters of discrete (BPS) and continuous (non-BPS) representations. Contrary to our naive expectation, we find a non-holomorphic dependence (dependence on \( \bar{\tau } \)) in the expansion coefficients of continuous representations. This non-holomorphicity appears in such a way that the anomalous modular behaviors of the discrete (BPS) characters are compensated by the transformation law of the non-holomorphic coefficients of the continuous (non-BPS) characters. Discrete characters together with the non-holomorphic continuous characters combine into real analytic Jacobi forms and these combinations exactly agree with the “modular completion” of discrete characters known in the theory of Mock theta functions [11].

We consider this to be a general phenomenon: we expect to encounter “holomorphic anomaly” (\( \bar{\tau } \)-dependence) in string partition function on non-compact target manifolds. The anomaly occurs due to the incompatibility of holomorphy and modular invariance of the theory. Appearance of non-holomorphicity in \( {{{{\text{SL}}\left( {2,\mathbb{R}} \right)}} \left/ {{{\text{U}}(1)}} \right.} \) elliptic genus has recently been observed by Troost [12].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Eguchi and A. Taormina, Character formulas for the N = 4 superconformal algebra, Phys. Lett. B 200 (1988) 315 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. T. Eguchi and A. Taormina, On the unitary representations of N = 2 and N = 4 superconformal algebras, Phys. Lett. B 210 (1988) 125 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. T. Eguchi and Y. Sugawara, Modular bootstrap for boundary N = 2 Liouville theory, JHEP 01 (2004) 025 [hep-th/0311141] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Eguchi and Y. Sugawara, SL(2,R)/U(1) supercoset and elliptic genera of non-compact Calabi-Yau manifolds, JHEP 05 (2004) 014 [hep-th/0403193] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Odake, Extension of N = 2 superconformal algebra and Calabi-Yau compactification, Mod. Phys. Lett. A 4 (1989) 557 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S. Odake, Character formulas of an extended superconformal algebra relevant to string compactification, Int. J. Mod. Phys. A 5 (1990) 897 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. K. Miki, The representation theory of the SO(3) invariant superconformal algebra, Int. J. Mod. Phys. A 5 (1990) 1293 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. T. Eguchi and Y. Sugawara, Conifold type singularities, N = 2 Liouville and SL(2,R)/U(1) theories, JHEP 01 (2005) 027 [hep-th/0411041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Hanany, N. Prezas and J. Troost, The partition function of the two-dimensional black hole conformal field theory, JHEP 04 (2002) 014 [hep-th/0202129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Israel, A. Pakman and J. Troost, Extended SL(2,R)/U(1) characters, or modular properties of a simple non-rational conformal field theory, JHEP 04 (2004) 043 [hep-th/0402085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Zwegers, Mock Theta functions, PhD thesis, Utrecht University, The Netherlands (2002).

  12. J. Troost, The non-compact elliptic genus: mock or modular, JHEP 06 (2010) 104 [arXiv:1004.3649] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Eguchi and K. Hikami, Superconformal Algebras and Mock Theta Functions, J. Phys. A 42 (2009) 304010 [arXiv:0812.1151] [SPIRES].

    MathSciNet  Google Scholar 

  14. T. Eguchi and K. Hikami, Superconformal Algebras and Mock Theta Functions 2. Rademacher Expansion for K3 Surface, arXiv:0904.0911 [SPIRES].

  15. Y. Kazama and H. Suzuki, New N = 2 Superconformal Field Theories and Superstring Compactification, Nucl. Phys. B 321 (1989) 232 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Karabali and H.J. Schnitzer, BRST Quantization of the Gauged WZW Action and Coset Conformal Field Theories, Nucl. Phys. B 329 (1990) 649 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Gawędzki and A. Kupiainen, Coset Construction from Functional Integrals, Nucl. Phys. B 320 (1989) 625 [SPIRES].

    Article  ADS  Google Scholar 

  18. H.J. Schnitzer, A path integral construction of superconformal field theories from a gauged supersymmetric Wess-Zumino-Witten action, Nucl. Phys. B 324 (1989) 412 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. I. Bars and D. Nemeschansky, String propagation in backgrounds with curved space-time, Nucl. Phys. B 348 (1991) 89 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. T. Eguchi, Y. Sugawara and A. Taormina, Liouville field, modular forms and elliptic genera, JHEP 03 (2007) 119 [hep-th/0611338] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Eguchi, Y. Sugawara and A. Taormina, Modular Forms and Elliptic Genera for ALE Spaces, arXiv:0803.0377 [SPIRES].

  27. K. Gawędzki, Noncompact WZW conformal field theories, hep-th/9110076 [SPIRES].

  28. A. Polishchuk, M.P. Allell’s Function and Vector Bundles of Rank 2 on Elliptic Curves, math.AG/9810084.

  29. A.M. Semikhatov, A. Taormina and I.Y. Tipunin, Higher Level Appell Functions, Modular Transformations and Characters, math.QA/0311314 [SPIRES].

  30. L.J. Mordell, The value of the definite integral, Quart. J. Math. 68 (1920) 329.

    Google Scholar 

  31. G.N. Watson, The final problem: An account of the mock theta functions, J. Lond. Math. Soc. 11 (1936) 55.

    Article  Google Scholar 

  32. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhäuser (1985).

  33. L.J. Dixon, M.E. Peskin and J.D. Lykken, N=2 Superconformal Symmetry and SO(2,1) Current Algebra, Nucl. Phys. B 325 (1989) 329 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sugawara.

Additional information

ArXiv ePrint: 1012.5721

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eguchi, T., Sugawara, Y. Non-holomorphic modular forms and SL(2,R)/U(1) superconformal field theory. J. High Energ. Phys. 2011, 107 (2011). https://doi.org/10.1007/JHEP03(2011)107

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)107

Keywords

Navigation