Skip to main content
Log in

Minimal dark matter and leptogenesis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A Dirac fermion carrying an integral weak isospin and the vanishing hypercharge is considered as a promising dark matter candidate (called the minimal dark matter) for its mass of order 100 GeV. While the symmetric population of the dark matter annihilates away due to a rapid gauge interaction, its asymmetric abundance is supposed to be produced together with the visible matter asymmetry through leptogenesis by the decay of a right-handed neutrino superfield in the supersymmetric type I seesaw mechanism. The efficiencies for generating the dark matter and lepton asymmetries are calculated by solving a set of approximate Boltzmann equations. A spectacular feature of this scenario is the existence of a long-lived singly-or multiply-charged scalar and a shorter-lived singly-charged fermion whose tracks can be readily looked for at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].

    Article  ADS  Google Scholar 

  2. E.J. Chun, Minimal dark matter in type-III seesaw, JHEP 12 (2009) 055 [arXiv:0909.3408] [SPIRES].

    Article  ADS  Google Scholar 

  3. F. Donato, D. Maurin, P. Brun, T. Delahaye and P. Salati, Constraints on WIMP dark matter from the high energy PAMELA \( {{{\bar{p}}} \left/ {p} \right.} \) data, Phys. Rev. Lett. 102 (2009) 071301 [arXiv:0810.5292] [SPIRES].

    Article  ADS  Google Scholar 

  4. G. Bertone, M. Cirelli, A. Strumia and M. Taoso, Gamma-ray and radio tests of the e + e excess from DM annihilations, JCAP 03 (2009) 009 [arXiv:0811.3744] [SPIRES].

    ADS  Google Scholar 

  5. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  6. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].

    Article  ADS  Google Scholar 

  7. H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [SPIRES].

    Article  ADS  Google Scholar 

  8. E.J. Chun, Leptogenesis origin of Dirac gaugino dark matter, arXiv:1009.0983 [SPIRES].

  9. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, arXiv:1101.4936 [SPIRES].

  10. N. Haba, S. Matsumoto and R. Sato, Sneutrino inflation with asymmetric dark matter, arXiv:1101.5679 [SPIRES].

  11. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  12. S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [SPIRES].

    ADS  Google Scholar 

  13. S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [SPIRES].

    ADS  Google Scholar 

  14. S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [SPIRES].

    ADS  Google Scholar 

  15. S. Dodelson, B.R. Greene and L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys. B 372 (1992) 467 [SPIRES].

    Article  ADS  Google Scholar 

  16. D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [SPIRES].

    Article  ADS  Google Scholar 

  17. V.A. Kuzmin, Simultaneous solution to baryogenesis and dark-matter problems, Phys. Part. Nucl. 29 (1998) 257 [hep-ph/9701269] [SPIRES].

    Article  Google Scholar 

  18. M. Fujii and T. Yanagida, A solution to the coincidence puzzle of Ω B and ΩDM, Phys. Lett. B 542 (2002) 80 [hep-ph/0206066] [SPIRES].

    ADS  Google Scholar 

  19. D.H. Oaknin and A. Zhitnitsky, Baryon asymmetry, dark matter and quantum chromodynamics, Phys. Rev. D 71 (2005) 023519 [hep-ph/0309086] [SPIRES].

    ADS  Google Scholar 

  20. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ω b /ΩDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [SPIRES].

    ADS  Google Scholar 

  21. R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [SPIRES].

    ADS  Google Scholar 

  22. N. Cosme, L. Lopez Honorez and M.H.G. Tytgat, Leptogenesis and dark matter related?, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [SPIRES].

    ADS  Google Scholar 

  23. G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [SPIRES].

    Article  ADS  Google Scholar 

  24. L. Roszkowski and O. Seto, Axino dark matter from Q-balls in Affleck-Dine baryogenesis and the Ω b − ΩDM coincidence problem, Phys. Rev. Lett. 98 (2007) 161304 [hep-ph/0608013] [SPIRES].

    Article  ADS  Google Scholar 

  25. J. McDonald, Right-handed sneutrino condensate cold dark matter and the baryon-to-dark matter ratio, JCAP 01 (2007) 001 [hep-ph/0609126] [SPIRES].

    ADS  Google Scholar 

  26. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].

    ADS  Google Scholar 

  27. K. Kohri, A. Mazumdar, N. Sahu and P. Stephens, Probing unified origin of dark matter and baryon asymmetry at PAMELA/Fermi, Phys. Rev. D 80 (2009) 061302 [arXiv:0907.0622] [SPIRES].

    ADS  Google Scholar 

  28. J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [SPIRES].

    ADS  Google Scholar 

  29. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [SPIRES].

    Article  ADS  Google Scholar 

  30. N. Haba and S. Matsumoto, Baryogenesis from dark sector, arXiv:1008.2487 [SPIRES].

  31. M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via leptogenesis and dark sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [SPIRES].

    Article  ADS  Google Scholar 

  32. L.J. Hall, J. March-Russell and S.M. West, A unified theory of matter genesis: asymmetric freeze-in, arXiv:1010.0245 [SPIRES].

  33. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].

    Article  ADS  Google Scholar 

  34. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung Jin Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, E.J. Minimal dark matter and leptogenesis. J. High Energ. Phys. 2011, 98 (2011). https://doi.org/10.1007/JHEP03(2011)098

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)098

Keywords

Navigation