Correlators between Wilson loop and chiral operators in \( \mathcal{N}=2 \) conformal gauge theories

Open Access
Regular Article - Theoretical Physics

Abstract

We consider conformal \( \mathcal{N}=2 \) super Yang-Mills theories with gauge group SU(N) and N f = 2N fundamental hypermultiplets in presence of a circular 1/2-BPS Wilson loop. It is natural to conjecture that the matrix model which describes the expectation value of this system also encodes the one-point functions of chiral scalar operators in presence of the Wilson loop. We obtain evidence of this conjecture by successfully comparing, at finite N and at the two-loop order, the one-point functions computed in field theory with the vacuum expectation values of the corresponding normal-ordered operators in the matrix model. For the part of these expressions with transcendentality ζ(3), we also obtain results in the large-N limit that are exact in the ’t Hooft coupling λ.

Keywords

Extended Supersymmetry Wilson ’t Hooft and Polyakov loops Conformal Field Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].
  2. [2]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].
  5. [5]
    N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: From four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [INSPIRE].
  7. [7]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [INSPIRE].
  8. [8]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].
  10. [10]
    V. Pestun and K. Zarembo, Comparing strings in AdS 5 × S 5 to planar diagrams: An Example, Phys. Rev. D 67 (2003) 086007 [hep-th/0212296] [INSPIRE].
  11. [11]
    G.W. Semenoff and D. Young, Exact 1/4 BPS Loop: Chiral primary correlator, Phys. Lett. B 643 (2006) 195 [hep-th/0609158] [INSPIRE].
  12. [12]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].
  13. [13]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai and D. Young, Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].
  15. [15]
    A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai and D. Young, Correlators of supersymmetric Wilson loops at weak and strong coupling, JHEP 03 (2010) 038 [arXiv:0912.5440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Bonini, L. Griguolo and M. Preti, Correlators of chiral primaries and 1/8 BPS Wilson loops from perturbation theory, JHEP 09 (2014) 083 [arXiv:1405.2895] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong coupling: From matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].
  20. [20]
    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].
  22. [22]
    D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].
  23. [23]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
  24. [24]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].
  26. [26]
    M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].
  27. [27]
    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].
  28. [28]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum Spectral Curve and Structure Constants in N = 4 SYM: Cusps in the Ladder Limit, arXiv:1802.04237 [INSPIRE].
  29. [29]
    J. Teschner, Exact results on N = 2 supersymmetric gauge theories, arXiv:1412.7145.
  30. [30]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
  31. [31]
    S.-J. Rey and T. Suyama, Exact Results and Holography of Wilson Loops in N = 2 Superconformal (Quiver) Gauge Theories, JHEP 01 (2011) 136 [arXiv:1001.0016] [INSPIRE].
  32. [32]
    F. Passerini and K. Zarembo, Wilson Loops in N = 2 Super-Yang-Mills from Matrix Model, JHEP 09 (2011) 102 [Erratum ibid. 10 (2011) 065] [arXiv:1106.5763] [INSPIRE].
  33. [33]
    J.G. Russo and K. Zarembo, Localization at Large N , in Proceedings, 100th anniversary of the birth of I.Ya. Pomeranchuk (Pomeranchuk 100), Moscow, Russia, June 5-6, 2013, pp. 287-311 (2014) [DOI: https://doi.org/10.1142/9789814616850_0015] [arXiv:1312.1214] [INSPIRE].
  34. [34]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
  35. [35]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in N = 2 Superconformal Field Theories, Phys. Rev. Lett. 116 (2016) 081601 [arXiv:1510.01332] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Bremsstrahlung function, leading Lüscher correction at weak coupling and localization, JHEP 02 (2016) 172 [arXiv:1511.05016] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Baggio, V. Niarchos and K. Papadodimas, tt equations, localization and exact chiral rings in 4d \( \mathcal{N}=2 \) SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
  40. [40]
    M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) \( \mathcal{N}=2 \) superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M. Baggio, V. Niarchos and K. Papadodimas, On exact correlation functions in SU(N ) \( \mathcal{N}=2 \) superconformal QCD, JHEP 11 (2015) 198 [arXiv:1508.03077] [INSPIRE].
  43. [43]
    M. Baggio, V. Niarchos, K. Papadodimas and G. Vos, Large-N correlation functions in \( \mathcal{N}=2 \) superconformal QCD, JHEP 01 (2017) 101 [arXiv:1610.07612] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu, Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103 [arXiv:1602.05971] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    D. Rodriguez-Gomez and J.G. Russo, Large N Correlation Functions in Superconformal Field Theories, JHEP 06 (2016) 109 [arXiv:1604.07416] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    D. Rodriguez-Gomez and J.G. Russo, Operator mixing in large N superconformal field theories on S 4 and correlators with Wilson loops, JHEP 12 (2016) 120 [arXiv:1607.07878] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Billò, F. Fucito, A. Lerda, J.F. Morales, Ya.S. Stanev and C. Wen, Two-point Correlators in N = 2 Gauge Theories, Nucl. Phys. B 926 (2018) 427 [arXiv:1705.02909] [INSPIRE].
  48. [48]
    R. Andree and D. Young, Wilson Loops in N = 2 Superconformal Yang-Mills Theory, JHEP 09 (2010) 095 [arXiv:1007.4923] [INSPIRE].
  49. [49]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].
  50. [50]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    E. Sysoeva, Wilson loops and its correlators with chiral operators in \( \mathcal{N}=2,\ 4 \) SCFT at large N,arXiv:1712.10297[INSPIRE].
  52. [52]
    S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in \( \mathcal{N}=4 \) SYM: Localization, Defect CFT and Integrability, arXiv:1802.05201 [INSPIRE].
  53. [53]
    E.I. Buchbinder and A.A. Tseytlin, Correlation function of circular Wilson loop with two local operators and conformal invariance, Phys. Rev. D 87 (2013) 026006 [arXiv:1208.5138] [INSPIRE].
  54. [54]
    M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in \( \mathcal{N}=4 \) SYM and defect 1d CFT, JHEP 03 (2018) 131 [arXiv:1712.06874] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • M. Billò
    • 1
    • 2
  • F. Galvagno
    • 1
    • 2
  • P. Gregori
    • 1
    • 3
  • A. Lerda
    • 4
    • 2
  1. 1.Dipartimento di Fisica and Arnold-Regge CenterUniversità di TorinoTorinoItaly
  2. 2.I.N.F.N. — sezione di TorinoTorinoItaly
  3. 3.Service de Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay InstitutesBruxellesBelgium
  4. 4.Dipartimento di Scienze e Innovazione Tecnologica and Arnold-Regge CenterUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations