Hydrodynamic excitations from chiral kinetic theory and the hydrodynamic frames

  • Navid Abbasi
  • Farid Taghinavaz
  • Kiarash Naderi
Open Access
Regular Article - Theoretical Physics


In the framework of chiral kinetic theory (CKT), we consider a system of right-and left-handed Weyl fermions out of thermal equilibrium in a homogeneous weak magnetic field. We show that the Lorentz invariance implies a modification in the definition of the momentum current in the phase space, compared to the case in which the system is in global equilibrium. Using this modified momentum current, we derive the linearized conservation equations from the kinetic equation up to second order in the derivative expansion. It turns out that the eigenmodes of these equations, namely the hydrodynamic modes, differ from those obtained from the hydrodynamic in the Landau-Lifshitz (LL) frame at the same order. We show that the modes of the former case may be transformed to the corresponding modes in the latter case by a global boost. The velocity of the boost is proportional to the magnetic field as well as the difference between the right- and left-handed charges susceptibility. We then compute the chiral transport coefficients in a system of non-Abelian chiral fermions in the no-drag frame and by making the above boost, obtain the well-known transport coeffiecients of the system in the LL frame. Finally by using the idea of boost, we reproduce the AdS/CFT result for the chiral drag force exerted on a quark at rest in the rest frame of the fluid, without performing any holographic computations.


AdS-CFT Correspondence Holography and quark-gluon plasmas 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Vilenkin, Equilibrium Parity Violating Current In A Magnetic Field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].ADSGoogle Scholar
  2. [2]
    H.B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130 (1983) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D.E. Kharzeev and H.-U. Yee, Chiral Magnetic Wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].
  4. [4]
    Y. Burnier, D.E. Kharzeev, J. Liao and H.-U. Yee, Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions, Phys. Rev. Lett. 107 (2011) 052303 [arXiv:1103.1307] [INSPIRE].
  5. [5]
    STAR collaboration, L. Adamczyk et al., Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions, Phys. Rev. Lett. 114 (2015) 252302 [arXiv:1504.02175] [INSPIRE].
  6. [6]
    ALICE collaboration, Charge-dependent anisotropic flow studies and the search for the Chiral Magnetic Wave in ALICE, Nucl. Phys. A 931 (2014) 981 [arXiv:1408.1043] [INSPIRE].
  7. [7]
    D.T. Son and B.Z. Spivak, Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals, Phys. Rev. B 88 (2013) 104412 [arXiv:1206.1627] [INSPIRE].
  8. [8]
    X. Huang et al., Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5 (2015) 031023 [arXiv:1503.01304] [INSPIRE].
  9. [9]
    H. Li et al., Negative magnetoresistance in Dirac semimetal Cd 3 As 2, Nature Commun. 7 (2016) 10301 [arXiv:1507.06470].ADSCrossRefGoogle Scholar
  10. [10]
    A. Vilenkin, Macroscopic Parity Violating Effects: Neutrino Fluxes From Rotating Black Holes And In Rotating Thermal Radiation, Phys. Rev. D 20 (1979) 1807 [INSPIRE].
  11. [11]
    P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [INSPIRE].
  12. [12]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D.T. Son and N. Yamamoto, Berry Curvature, Triangle Anomalies and the Chiral Magnetic Effect in Fermi Liquids, Phys. Rev. Lett. 109 (2012) 181602 [arXiv:1203.2697] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys. Rev. Lett. 109 (2012) 162001 [arXiv:1207.0747] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.A. Stephanov, H.-U. Yee and Y. Yin, Collective modes of chiral kinetic theory in a magnetic field, Phys. Rev. D 91 (2015) 125014 [arXiv:1501.00222] [INSPIRE].
  21. [21]
    J.-Y. Chen, D.T. Son, M.A. Stephanov, H.-U. Yee and Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (2014) 182302 [arXiv:1404.5963] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D.T. Son and N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories, Phys. Rev. D 87 (2013) 085016 [arXiv:1210.8158] [INSPIRE].
  23. [23]
    J.-Y. Chen, D.T. Son and M.A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2015) 021601 [arXiv:1502.06966] [INSPIRE].
  24. [24]
    N. Yamamoto, Chiral Alfvén Wave in Anomalous Hydrodynamics, Phys. Rev. Lett. 115 (2015) 141601 [arXiv:1505.05444] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Abbasi, A. Davody, K. Hejazi and Z. Rezaei, Hydrodynamic Waves in an Anomalous Charged Fluid, Phys. Lett. B 762 (2016) 23 [arXiv:1509.08878] [INSPIRE].
  26. [26]
    N. Abbasi, D. Allahbakhshi, A. Davody and S.F. Taghavi, Hydrodynamic excitations in hot QCD plasma, Phys. Rev. D 96 (2017) 126002 [arXiv:1612.08614] [INSPIRE].
  27. [27]
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].
  28. [28]
    K. Landsteiner, Notes on Anomaly Induced Transport, Acta Phys. Polon. B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
  29. [29]
    M.A. Stephanov and H.-U. Yee, No-Drag Frame for Anomalous Chiral Fluid, Phys. Rev. Lett. 116 (2016) 122302 [arXiv:1508.02396] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang and X.-N. Wang, Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach, Phys. Rev. Lett. 109 (2012) 232301 [arXiv:1203.0725] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].
  33. [33]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].
  34. [34]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Rajagopal and A.V. Sadofyev, Chiral drag force, JHEP 10 (2015) 018 [arXiv:1505.07379] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Anomalous Transport from Kubo Formulae, Lect. Notes Phys. 871 (2013) 433 [arXiv:1207.5808] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Frenklakh, Chiral heat wave and mixed waves in kinetic theory, Phys. Rev. D 94 (2016) 116010 [arXiv:1603.08971] [INSPIRE].
  38. [38]
    M.N. Chernodub, Chiral Heat Wave and mixing of Magnetic, Vortical and Heat waves in chiral media, JHEP 01 (2016) 100 [arXiv:1509.01245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].
  40. [40]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A Theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].
  42. [42]
    P.M. Chesler and L.G. Yaffe, The Stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: Comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [INSPIRE].
  43. [43]
    N. Abbasi and A. Davody, Moving Quark in a Viscous Fluid, JHEP 06 (2012) 065 [arXiv:1202.2737] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Abbasi and A. Davody, The Energy Loss of a Heavy Quark Moving Through a General Fluid Dynamical Flow, JHEP 12 (2013) 026 [arXiv:1310.4105] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C.P. Herzog, Energy Loss of Heavy Quarks from Asymptotically AdS Geometries, JHEP 09 (2006) 032 [hep-th/0605191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge University Press, Cambridge U.K. (2014) [ISBN: 9781139136747] [arXiv:1101.0618] [INSPIRE].
  47. [47]
    M. Lekaveckas and K. Rajagopal, Effects of Fluid Velocity Gradients on Heavy Quark Energy Loss, JHEP 02 (2014) 068 [arXiv:1311.5577] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Kalaydzhyan and E. Murchikova, Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids, Nucl. Phys. B 919 (2017) 173 [arXiv:1609.00024] [INSPIRE].
  49. [49]
    K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Parity-Violating Hydrodynamics in 2 + 1 Dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].
  50. [50]
    M. Ammon, M. Kaminski, R. Koirala, J. Leiber and J. Wu, Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP 04 (2017) 067 [arXiv:1701.05565] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Navid Abbasi
    • 1
  • Farid Taghinavaz
    • 1
  • Kiarash Naderi
    • 2
  1. 1.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations