Skip to main content

Equivalent equations of motion for gravity and entropy

A preprint version of the article is available at arXiv.

Abstract

We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space [1] and fields on this space, introduced in [2]. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.

References

  1. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral geometry and holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A stereoscopic look into the bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

  4. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  6. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].

    ADS  Article  Google Scholar 

  9. T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. B. Swingle and M. Van Raamsdonk, Universality of gravity from entanglement, arXiv:1405.2933 [INSPIRE].

  11. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].

    ADS  Google Scholar 

  12. J. Bhattacharya and T. Takayanagi, Entropic counterpart of perturbative Einstein equation, JHEP 10 (2013) 219 [arXiv:1308.3792] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement temperature and entanglement entropy of excited states, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].

    ADS  Article  Google Scholar 

  14. J. de Boer, M.P. Heller, R.C. Myers and Y. Neiman, Holographic de Sitter geometry from entanglement in conformal field theory, Phys. Rev. Lett. 116 (2016) 061602 [arXiv:1509.00113] [INSPIRE].

    ADS  Article  Google Scholar 

  15. D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. G. Solanes, Integral geometry and curvature integrals in hyperbolic space, Universitat Autonoma de Barcelona, Barcelona Spain, (2003).

    Google Scholar 

  18. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    ADS  Article  Google Scholar 

  19. S. Helgason, The Radon transform, volume 5, Springer, U.S.A., (1999).

  20. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].

  26. B. Mosk, Holographic equivalence between the first law of entanglement entropy and the linearized gravitational equations, Phys. Rev. D 94 (2016) 126001 [arXiv:1608.06292] [INSPIRE].

    ADS  Google Scholar 

  27. V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. W.R. Kelly and A.C. Wall, Coarse-grained entropy and causal holographic information in AdS/CFT, JHEP 03 (2014) 118 [arXiv:1309.3610] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. W.R. Kelly, Deriving the first law of black hole thermodynamics without entanglement, JHEP 10 (2014) 192 [arXiv:1408.3705] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from entanglement of conformal field theories, Phys. Rev. Lett. 114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

    ADS  Google Scholar 

  32. D. Kabat and G. Lifschytz, Bulk equations of motion from CFT correlators, JHEP 09 (2015) 059 [arXiv:1505.03755] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. D. Kabat and G. Lifschytz, Locality, bulk equations of motion and the conformal bootstrap, JHEP 10 (2016) 091 [arXiv:1603.06800] [INSPIRE].

    ADS  Article  Google Scholar 

  34. I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

    ADS  Article  Google Scholar 

  35. K. Pilch and A.N. Schellekens, Formulae for the eigenvalues of the Laplacian on tensor harmonics on symmetric coset spaces, J. Math. Phys. 25 (1984) 3455 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel McCandlish.

Additional information

ArXiv ePrint: 1608.06282

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Czech, B., Lamprou, L., McCandlish, S. et al. Equivalent equations of motion for gravity and entropy. J. High Energ. Phys. 2017, 4 (2017). https://doi.org/10.1007/JHEP02(2017)004

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2017)004

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory