Skip to main content

Chaos in classical D0-brane mechanics

A preprint version of the article is available at arXiv.

Abstract

We study chaos in the classical limit of the matrix quantum mechanical system describing D0-brane dynamics. We determine a precise value of the largest Lyapunov exponent, and, with less precision, calculate the entire spectrum of Lyapunov exponents. We verify that these approach a smooth limit as N → ∞. We show that a classical analog of scrambling occurs with fast scrambling scaling, t ∼ log S. These results confirm the k-locality property of matrix mechanics discussed by Sekino and Susskind.

References

  1. [1]

    C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].

  2. [2]

    A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Commun. Math. Phys. 291 (2009) 257 [arXiv:0802.1919].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. [3]

    L. Arnaud and D. Braun, Efficiency of producing random unitary matrices with quantum circuits, Phys. Rev. A 78 (2008) 062329 [arXiv:0807.0775].

    Article  ADS  Google Scholar 

  4. [4]

    W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random quantum circuits, Phys. Rev. Lett. 104 (2010) 250501 [arXiv:0910.0913].

    Article  ADS  Google Scholar 

  5. [5]

    I.T. Diniz and D. Jonathan, Comment on the paper ‘random quantum circuits are approximate 2-designs’, Commun. Math. Phys. 304 (2011) 281 [arXiv:1006.4202].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. [6]

    W. Brown and O. Fawzi, Scrambling speed of random quantum circuits, arXiv:1210.6644 [INSPIRE].

  7. [7]

    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. [8]

    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].

  9. [9]

    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. [11]

    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. [14]

    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. [15]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. [16]

    S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. [18]

    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. [19]

    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at Fundamental Physics Prize Symposium, Stanford SITP seminars, U.S.A. November 11 and December 18 2014.

  20. [20]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE].

  21. [21]

    A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of super-conductivity, JETP 28 (1969) 1200.

    ADS  Google Scholar 

  22. [22]

    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev. D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    A.Y. Kitaev, A simple model of quantum holography, talk given at KITP program: entanglement in Strongly-Correlated Quantum Matter, U.S.A. April 7 and May 27 2015.

  25. [25]

    D. Stanford, A bound on chaos, talk given at SITP workshop: fundamental bounds on quantum dynamics: chaos, dissipation, entanglement, and complexity, October 17 2015.

  26. [26]

    S. Sachdev and J.-W. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  27. [27]

    S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].

    Google Scholar 

  28. [28]

    S.G. Matinyan, G.K. Savvidy and N.G. Ter-Arutunian Savvidy, Classical Yang-Mills mechanics. Nonlinear color oscillations, Sov. Phys. JETP 53 (1981) 421 [Zh. Eksp. Teor. Fiz. 80 (1981) 830] [INSPIRE].

  29. [29]

    G.K. Savvidy, Yang-Mills classical mechanics as a Kolmogorov K system, Phys. Lett. B 130 (1983) 303 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. [30]

    G.K. Savvidy, Classical and quantum mechanics of non-Abelian gauge fields, Nucl. Phys. B 246 (1984) 302 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. [31]

    I. Ya. Aref’eva, P.B. Medvedev, O.A. Rytchkov and I.V. Volovich, Chaos in M(atrix) theory, Chaos Solitons Fractals 10 (1999) 213 [hep-th/9710032] [INSPIRE].

  32. [32]

    I. Ya. Aref’eva, A.S. Koshelev and P.B. Medvedev, Chaos order transition in matrix theory, Mod. Phys. Lett. A 13 (1998) 2481 [hep-th/9804021] [INSPIRE].

  33. [33]

    C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett. 107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    C.T. Asplund, D. Berenstein and E. Dzienkowski, Large-N classical dynamics of holographic matrix models, Phys. Rev. D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    Y. Asano, D. Kawai and K. Yoshida, Chaos in the BMN matrix model, JHEP 06 (2015) 191 [arXiv:1503.04594] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. [36]

    S. Aoki, M. Hanada and N. Iizuka, Quantum black hole formation in the BFSS matrix model, JHEP 07 (2015) 029 [arXiv:1503.05562] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. [37]

    K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].

    Article  ADS  Google Scholar 

  38. [38]

    S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. [39]

    M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].

    Article  ADS  Google Scholar 

  40. [40]

    D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].

  41. [41]

    V.G. Filev and D. O’Connor, The BFSS model on the lattice, arXiv:1506.01366 [INSPIRE].

  42. [42]

    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].

    Article  ADS  Google Scholar 

  43. [43]

    N. Kawahara, J. Nishimura and S. Takeuchi, High temperature expansion in supersymmetric matrix quantum mechanics, JHEP 12 (2007) 103 [arXiv:0710.2188] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. [44]

    V.I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems, Trudy Mosk. Matemat. Obsh. 19 (1968) 179 [Trans. Moscow Math. Soc. 19 (1968) 197].

  45. [45]

    H. Xu, An SVD-like matrix decomposition and its applications, Linear Alg. Appl. 368 (2003) 1.

    Article  MATH  Google Scholar 

  46. [46]

    I. Goldhirsch, P.-L. Sulem and S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method, Physica D 27 (1987) 311.

    ADS  MathSciNet  Google Scholar 

  47. [47]

    J.C. Sprott, Chaos and time-series analysis, Oxford University Press, Oxford U.K. (2003).

    MATH  Google Scholar 

  48. [48]

    R. Alicki, Information-theoretical meaning of quantum-dynamical entropy, Phys. Rev. A 66 (2002) 052302 [quant-ph/0201012].

    Article  ADS  MathSciNet  Google Scholar 

  49. [49]

    R. Alicki, Quantum geometry of noncommutative Bernoulli shifts, Banach Center Publ. 43 (1998) 25.

    MathSciNet  Google Scholar 

  50. [50]

    R. Vilela Mendes, Entropy and quantum characteristic exponents. Steps towards a quantum Pesin theory, in Chaos — the interplay between stochastic and deterministic behaviour, Springer, Germany (1995), pg. 273 [INSPIRE].

  51. [51]

    V.I. Man’ko and R. Vilela Mendes, Lyapunov exponent in quantum mechanics. A phase-space approach, Physica D 145 (2000) 330 [quant-ph/0002049].

  52. [52]

    V.I. Man’ko and R. Vilela Mendes, Quantum sensitive dependence, Phys. Lett. A 300 (2002) 353 [quant-ph/0205148].

  53. [53]

    T. Kunihiro, B. Müller, A. Ohnishi and A. Schäfer, Towards a theory of entropy production in the little and big bang, Prog. Theor. Phys. 121 (2009) 555 [arXiv:0809.4831] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. [54]

    C.T. Asplund and D. Berenstein, Entanglement entropy converges to classical entropy around periodic orbits, arXiv:1503.04857 [INSPIRE].

  55. [55]

    W.H. Zurek and J.P. Paz, Decoherence, chaos and the second law, Phys. Rev. Lett. 72 (1994) 2508 [gr-qc/9402006] [INSPIRE].

  56. [56]

    K. Ropotenko, Kolmogorov-Sinai entropy and black holes, Class. Quant. Grav. 25 (2008) 195005 [arXiv:0808.2131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. [57]

    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    Y.-Z. Li, S.-F. Wu, Y.-Q. Wang and G.-H. Yang, Linear growth of entanglement entropy in holographic thermalization captured by horizon interiors and mutual information, JHEP 09 (2013) 057 [arXiv:1306.0210] [INSPIRE].

    Article  ADS  Google Scholar 

  59. [59]

    D. Stanford, unpublished.

  60. [60]

    H. Liu and S.J. Suh, Entanglement Tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].

    Article  ADS  Google Scholar 

  61. [61]

    R. Eichhorn, S.J. Linz and P. Hänggi, Transformation invariance of Lyapunov exponents, Chaos Solitons Fractals 12 (2001) 1377.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guy Gur-Ari.

Additional information

ArXiv ePrint: 1512.00019

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gur-Ari, G., Hanada, M. & Shenker, S.H. Chaos in classical D0-brane mechanics. J. High Energ. Phys. 2016, 91 (2016). https://doi.org/10.1007/JHEP02(2016)091

Download citation

Keywords

  • Brane Dynamics in Gauge Theories
  • Gauge Symmetry
  • 1/N Expansion