Skip to main content

Heavy Majorana neutrinos from fusion at hadron colliders

A preprint version of the article is available at arXiv.

Abstract

Vector boson fusion processes become increasingly more important at higher collider energies and for probing larger mass scales due to collinear logarithmic enhancements of the cross section. In this context, we revisit the production of a hypothetic heavy Majorana neutrino (N) at hadron colliders. Particular attention is paid to the fusion process Nℓ ±. We systematically categorize the contributions from a photon initial state in the elastic, inelastic, and deeply inelastic channels. Comparing with the leading channel via the Drell-Yan production \( q{\overline{q}}^{\prime } \) → W * → Nℓ ± at NNLO in QCD, we find that the fusion process becomes relatively more important at higher scales, surpassing the DY mechanism at m N ∼ 1 TeV (770 GeV), at the 14 TeV LHC (100 TeV VLHC). We investigate the inclusive heavy Majorana neutrino signal, including QCD corrections, and quantify the Standard Model backgrounds at future hadron colliders. We conclude that, with the currently allowed mixing |V μN |2 < 6 × 10−3, a 5σ discovery can be made via the same-sign dimuon channel for m N = 530 (1070) GeV at the 14 TeV LHC (100 TeV VLHC) after 1 ab−1. Reversely, for m N = 500 GeV and the same integrated luminosity, a mixing |V μN |2 of the order 1.1 × 10−3 (2.5 × 10−4) may be probed.

References

  1. R.N. Mohapatra and P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition, World Sci. Lect. Notes Phys. 60 (1998) 1 [World Sci. Lect. Notes Phys. 72 (2004) 1] [INSPIRE].

  2. J. Gluza, On teraelectronvolt Majorana neutrinos, Acta Phys. Polon. B 33 (2002) 1735 [hep-ph/0201002] [INSPIRE].

    ADS  Google Scholar 

  3. M. Fukugita and T. Yanagida, Physics of neutrinos and applications to astrophysics, Springer, Berlin Germany (2003).

    Book  Google Scholar 

  4. V. Barger, D. Marfatia and K. Whisnant, Progress in the physics of massive neutrinos, Int. J. Mod. Phys. E 12 (2003) 569 [hep-ph/0308123] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Particle Data Group collaboration, S. Eidelman et al., Review of particle physics, Phys. Lett. B 592 (2004) 1 [INSPIRE].

    ADS  Google Scholar 

  6. R.N. Mohapatra and A.Y. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].

  8. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  11. P. Van Nieuwenhuizen and D.Z. Freedman, Supergravity. Proceedings, workshop at stony brook, 27-29 September 1979, North-Holland, Amsterdam, Netherlands (1979).

  12. P. Ramond, The family group in grand unified theories, hep-ph/9809459 [INSPIRE].

  13. S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 59 (1980) 687.

    Google Scholar 

  14. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  16. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  17. R.E. Shrock, General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for and bounds on, neutrino masses and lepton mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].

    ADS  Google Scholar 

  18. J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

    ADS  Google Scholar 

  19. N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [INSPIRE].

    ADS  Google Scholar 

  20. F. Borzumati and Y. Nomura, Low scale seesaw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [INSPIRE].

    ADS  Google Scholar 

  21. A. de Gouvêa, See-saw energy scale and the LSND anomaly, Phys. Rev. D 72 (2005) 033005 [hep-ph/0501039] [INSPIRE].

    ADS  Google Scholar 

  22. A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [INSPIRE].

    ADS  Google Scholar 

  23. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

    Article  ADS  Google Scholar 

  24. D.A. Dicus, D.D. Karatas and P. Roy, Lepton nonconservation at supercollider energies, Phys. Rev. D 44 (1991) 2033 [INSPIRE].

    ADS  Google Scholar 

  25. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].

    ADS  Google Scholar 

  26. A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via Majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195 [hep-ph/9311257] [INSPIRE].

    ADS  Google Scholar 

  27. T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].

    Article  ADS  Google Scholar 

  28. F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].

    Article  Google Scholar 

  29. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  30. W. Chao, Z.G. Si, Y.J. Zheng and S. Zhou, Testing the realistic seesaw model with two heavy majorana neutrinos at the CERN Large Hadron Collider, Phys. Lett. B 683 (2010) 26 [arXiv:0907.0935] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.A. Aguilar-Saavedra, F. Deppisch, O. Kittel and J.W.F. Valle, Flavour in heavy neutrino searches at the LHC, Phys. Rev. D 85 (2012) 091301 [arXiv:1203.5998] [INSPIRE].

    ADS  Google Scholar 

  32. S.P. Das, F.F. Deppisch, O. Kittel and J.W.F. Valle, Heavy neutrinos and lepton flavour violation in left-right symmetric models at the LHC, Phys. Rev. D 86 (2012) 055006 [arXiv:1206.0256] [INSPIRE].

    ADS  Google Scholar 

  33. J.A. Aguilar-Saavedra and F.R. Joaquim, Measuring heavy neutrino couplings at the LHC, Phys. Rev. D 86 (2012) 073005 [arXiv:1207.4193] [INSPIRE].

    ADS  Google Scholar 

  34. T. Han, I. Lewis, R. Ruiz and Z.-g. Si, Lepton number violation and W chiral couplings at the LHC, Phys. Rev. D 87 (2013) 035011 [arXiv:1211.6447] [INSPIRE].

    ADS  Google Scholar 

  35. C.-Y. Chen, P.S.B. Dev and R.N. Mohapatra, Probing heavy-light neutrino mixing in left-right seesaw models at the LHC, Phys. Rev. D 88 (2013) 033014 [arXiv:1306.2342] [INSPIRE].

    ADS  Google Scholar 

  36. P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New production mechanism for heavy neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Davoudiasl and I.M. Lewis, Right-handed neutrinos as the origin of the electroweak scale, Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].

    ADS  Google Scholar 

  38. D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

    Article  ADS  Google Scholar 

  39. CMS collaboration, Search for heavy Majorana neutrinos in μ + μ +[μ μ ] and e + e +[e e ] events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].

    ADS  Google Scholar 

  40. ATLAS collaboration, Search for Majorana neutrino production in pp collisions at \( \sqrt{s} \) = 7 TeV in dimuon final states with the ATLAS detector, ATLAS-CONF-2012-139 (2012).

  41. LHCb collaboration, Searches for Majorana neutrinos in B decays, Phys. Rev. D 85 (2012) 112004 [arXiv:1201.5600] [INSPIRE].

    Google Scholar 

  42. G. Bélanger, F. Boudjema, D. London and H. Nadeau, Inverse neutrinoless double beta decay revisited, Phys. Rev. D 53 (1996) 6292 [hep-ph/9508317] [INSPIRE].

    ADS  Google Scholar 

  43. P. Benes, A. Faessler, F. Simkovic and S. Kovalenko, Sterile neutrinos in neutrinoless double beta decay, Phys. Rev. D 71 (2005) 077901 [hep-ph/0501295] [INSPIRE].

    ADS  Google Scholar 

  44. E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Nardi, E. Roulet and D. Tommasini, New neutral gauge bosons and new heavy fermions in the light of the new LEP data, Phys. Lett. B 344 (1995) 225 [hep-ph/9409310] [INSPIRE].

    Article  ADS  Google Scholar 

  46. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].

    ADS  Google Scholar 

  47. S. Antusch and O. Fischer, Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, JHEP 1410 (2014) 94 [arXiv:1407.6607] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403-404] [INSPIRE].

  49. V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [INSPIRE].

    Article  ADS  Google Scholar 

  50. B.A. Kniehl, Elastic ep scattering and the Weizsacker-Williams approximation, Phys. Lett. B 254 (1991) 267 [INSPIRE].

    Article  ADS  Google Scholar 

  51. M.M. Block, E.M. Gregores, F. Halzen and G. Pancheri, Photon-proton and photon-photon scattering from nucleon-nucleon forward amplitudes, Phys. Rev. D 60 (1999) 054024 [hep-ph/9809403] [INSPIRE].

    ADS  Google Scholar 

  52. M. Gluck, C. Pisano and E. Reya, The polarized and unpolarized photon content of the nucleon, Phys. Lett. B 540 (2002) 75 [hep-ph/0206126] [INSPIRE].

    Article  ADS  Google Scholar 

  53. B.E. Cox et al., Detecting the standard model Higgs boson in the WW decay channel using forward proton tagging at the LHC, Eur. Phys. J. C 45 (2006) 401 [hep-ph/0505240] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. de Favereau de Jeneret et al., High energy photon interactions at the LHC, arXiv:0908.2020 [INSPIRE].

  55. D. d’Enterria and G.G. da Silveira, Observing light-by-light scattering at the Large Hadron Collider, Phys. Rev. Lett. 111 (2013) 080405 [arXiv:1305.7142] [INSPIRE].

    Article  Google Scholar 

  56. M. Drees and K. Grassie, Parametrizations of the photon structure and applications to supersymmetric particle production at HERA, Z. Phys. C 28 (1985) 451 [INSPIRE].

    ADS  Google Scholar 

  57. M. Drees, R.M. Godbole, M. Nowakowski and S.D. Rindani, γγ processes at high-energy pp colliders, Phys. Rev. D 50 (1994) 2335 [hep-ph/9403368] [INSPIRE].

    ADS  Google Scholar 

  58. V.A. Khoze, A.D. Martin and M.G. Ryskin, Prospects for new physics observations in diffractive processes at the LHC and Tevatron, Eur. Phys. J. C 23 (2002) 311 [hep-ph/0111078] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].

    ADS  Google Scholar 

  60. A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s} \) = 8 TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].

    Article  ADS  Google Scholar 

  61. E. Chapon, C. Royon and O. Kepka, Anomalous quartic WWγγ, ZZγγ and trilinear WW gamma couplings in two-photon processes at high luminosity at the LHC, Phys. Rev. D 81 (2010) 074003 [arXiv:0912.5161] [INSPIRE].

    ADS  Google Scholar 

  62. I. Sahin and M. Koksal, Search for electromagnetic properties of the neutrinos at the LHC, JHEP 03 (2011) 100 [arXiv:1010.3434] [INSPIRE].

    Article  ADS  Google Scholar 

  63. R.S. Gupta, Probing quartic neutral gauge boson couplings using diffractive photon fusion at the LHC, Phys. Rev. D 85 (2012) 014006 [arXiv:1111.3354] [INSPIRE].

    ADS  Google Scholar 

  64. I. Sahin, Electromagnetic properties of the neutrinos in gamma-proton collision at the LHC, Phys. Rev. D 85 (2012) 033002 [arXiv:1201.4364] [INSPIRE].

    ADS  Google Scholar 

  65. I. Sahin and B. Sahin, Anomalous quartic ZZγγ couplings in γp collision at the LHC, Phys. Rev. D 86 (2012) 115001 [arXiv:1211.3100] [INSPIRE].

    ADS  Google Scholar 

  66. DELPHI collaboration, P. Abreu et al., First evidence of hard scattering processes in single tagged γγ collisions, Phys. Lett. B 342 (1995) 402 [INSPIRE].

    ADS  Google Scholar 

  67. CMS collaboration, Exclusive photon-photon production of muon pairs in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2012) 052 [arXiv:1111.5536] [INSPIRE].

    ADS  Google Scholar 

  68. CMS collaboration, Study of exclusive two-photon production of W + W in pp collisions at \( \sqrt{s} \) = 7 TeV and constraints on anomalous quartic gauge couplings, JHEP 07 (2013) 116 [arXiv:1305.5596] [INSPIRE].

    ADS  Google Scholar 

  69. H1 collaboration, S. Aid et al., Elastic and inelastic photoproduction of J/ψ mesons at HERA, Nucl. Phys. B 472 (1996) 3 [hep-ex/9603005] [INSPIRE].

    ADS  Google Scholar 

  70. H1 collaboration, C. Adloff et al., Elastic photoproduction of J/ψ and ϒ mesons at HERA, Phys. Lett. B 483 (2000) 23 [hep-ex/0003020] [INSPIRE].

    Google Scholar 

  71. M. Drees and D. Zeppenfeld, Production of supersymmetric particles in elastic ep collisions, Phys. Rev. D 39 (1989) 2536 [INSPIRE].

    ADS  Google Scholar 

  72. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  74. C.-H. Lee, P.S. Bhupal Dev and R.N. Mohapatra, Natural TeV-scale left-right seesaw mechanism for neutrinos and experimental tests, Phys. Rev. D 88 (2013) 093010 [arXiv:1309.0774] [INSPIRE].

    ADS  Google Scholar 

  75. T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  76. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  77. N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  78. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  79. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  80. R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].

    Article  ADS  Google Scholar 

  81. R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE].

    Google Scholar 

  82. M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, First limits on left-right symmetry scale from LHC data, Phys. Rev. D 83 (2011) 115014 [arXiv:1103.1627] [INSPIRE].

    ADS  Google Scholar 

  83. CMS collaboration, Search for leptonic decays of W bosons in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 08 (2012) 023 [arXiv:1204.4764] [INSPIRE].

    ADS  Google Scholar 

  84. A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s} \) = 14 TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].

  85. J. Alwall and G. Ingelman, Interpretation of electron proton scattering at low Q 2, Phys. Lett. B 596 (2004) 77 [hep-ph/0402248] [INSPIRE].

    Article  ADS  Google Scholar 

  86. E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].

    Article  ADS  Google Scholar 

  87. C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].

    Article  ADS  Google Scholar 

  88. ATLAS collaboration, Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  89. CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].

  90. J.M. Campbell and R.K. Ellis, \( t\overline{t}{W}^{\pm } \) production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].

    Article  ADS  Google Scholar 

  91. ATLAS collaboration, Inclusive search for same-sign dilepton signatures in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 10 (2011) 107 [arXiv:1108.0366] [INSPIRE].

    ADS  Google Scholar 

  92. CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].

    ADS  Google Scholar 

  93. T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [INSPIRE].

    Article  ADS  Google Scholar 

  94. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  95. J.J. Sakurai and D. Schildknecht, Generalized vector dominance and inelastic electron-proton scattering, Phys. Lett. B 40 (1972) 121 [INSPIRE].

    Article  ADS  Google Scholar 

  96. M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  97. NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

    Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Ruiz.

Additional information

ArXiv ePrint: 1411.7305

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alva, D., Han, T. & Ruiz, R. Heavy Majorana neutrinos from fusion at hadron colliders. J. High Energ. Phys. 2015, 72 (2015). https://doi.org/10.1007/JHEP02(2015)072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2015)072

Keywords

  • Beyond Standard Model
  • Neutrino Physics