Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-doublet model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

LHC search of new Higgs boson via resonant di-Higgs production with decays into 4W

19 June 2018

Jing Ren, Rui-Qing Xiao, … Weiming Yao

Probing the scalar potential via double Higgs boson production at hadron colliders

02 April 2019

Sophia Borowka, Claude Duhr, … Xiaoran Zhao

Analysis of W± + 4γ in the 2HDM Type-I at the LHC

06 December 2021

Yan Wang, A. Arhrib, … Qi-Shu Yan

Enhanced di-Higgs production in the two Higgs doublet model

28 February 2019

K. S. Babu & Sudip Jana

Electroweak production of multiple (pseudo)scalars in the 2HDM

15 June 2019

Rikard Enberg, William Klemm, … Shoaib Munir

Decay of the charged Higgs boson and the top quark in two-Higgs-doublet model at NNLO in QCD

24 May 2022

Xiao-Min Shen, YaLu Hu, … Jun Gao

The forgotten channels: charged Higgs boson decays to a W± and a non-SM-like Higgs boson

30 June 2021

Henning Bahl, Tim Stefaniak & Jonas Wittbrodt

Sensitivity to triple Higgs couplings via di-Higgs production in the 2HDM at $$e^+e^-$$ e + e - colliders

17 October 2021

F. Arco, S. Heinemeyer & M. J. Herrero

Higgs interference effects at the one-loop level in the 1-Higgs-Singlet extension of the Standard Model

18 July 2019

Nikolas Kauer, Alexander Lind, … Weimin Song

Download PDF
  • Open Access
  • Published: 05 February 2014

Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-doublet model

  • Robert V. Harlander1,
  • Stefan Liebler1 &
  • Tom Zirke1 

Journal of High Energy Physics volume 2014, Article number: 23 (2014) Cite this article

  • 485 Accesses

  • 39 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We present a calculation of all relevant contributions to associated production of a Higgs boson with a weak gauge boson in the 2-Higgs-doublet model (2HDM) at the LHC, pp → ϕ, with ϕ ∈ {h, H 0 , A} and V ∈ {W, Z}. While for the W ϕ mode, this mostly amounts to a simple rescaling of the Standard Model (SM) cross section, the Zϕ cross section depends on several 2HDM parameters. The ratio σ Wϕ /σ Zϕ, for which we present the currently most complete SM prediction, therefore appears to be a sensitive probe of possible New Physics effects. We study its numerical dependence on the top and bottom Yukawa couplings, including their sign. Furthermore, we consider the Wϕ/Zϕ ratio in exemplary 2HDM scenarios and briefly address the effects in the boosted regime. Analogous studies for other 2HDM scenarios will become possible with an upcoming version of the program vh@nnlo which incorporates the 2HDM effects.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  4. TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaboration, Combined CDF and D0 search for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1203.3774 [INSPIRE].

  5. ATLAS collaboration, Search for associated production of the Higgs boson in the WH → WWW ∗ → lνlνlνandZH → ZWW ∗ → lllνlν channels with the ATLAS detector at the LHC, ATLAS-CONF-2013-075 (2013).

  6. ATLAS collaboration, Search for the bb decay of the standard model Higgs boson in associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079 (2013).

  7. ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).

  8. CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for LHCp 2013, CMS-PAS-HIG-13-012 (2013).

  9. CMS collaboration, Search for invisible Higgs produced in association with a Z boson, CMS-PAS-HIG-13-018 (2013).

  10. CMS collaboration, VH with H → W W → ℓνℓν and V → jj, CMS-PAS-HIG-13-017 (2013).

  11. T. Han and S. Willenbrock, QCD correction to the pp → W H and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  12. O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

    ADS  Google Scholar 

  14. S. Dawson, T. Han, W. Lai, A. Leibovich and I. Lewis, Resummation effects in vector-boson and Higgs associated production, Phys. Rev. D 86 (2012) 074007 [arXiv:1207.4207] [INSPIRE].

    ADS  Google Scholar 

  15. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Denner, S. Dittmaier, S. Kallweit and A. Muck, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  18. D.A. Dicus and C. Kao, Higgs boson-Z 0 production from gluon fusion, Phys. Rev. D 38 (1988) 1008 [Erratum ibid. D 42 (1990) 2412] [INSPIRE].

    ADS  Google Scholar 

  19. B.A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions, Phys. Rev. D 42 (1990) 2253 [INSPIRE].

    ADS  Google Scholar 

  20. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  21. A. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  24. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].

    ADS  Google Scholar 

  27. D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].

  28. N. Craig et al., Multi-lepton signals of multiple Higgs bosons, JHEP 02 (2013) 033 [arXiv:1210.0559] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].

    ADS  Google Scholar 

  30. A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].

    ADS  Google Scholar 

  32. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Krawczyk, D. Sokolowska and B. Swiezewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].

    Article  ADS  Google Scholar 

  35. W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  36. C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHC — The story so far, arXiv:1304.5225 [INSPIRE].

  38. N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  39. C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  40. O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM confronting LHC data, arXiv:1305.4587 [INSPIRE].

  42. ATLAS collaboration, Search for Higgs bosons in two-Higgs-doublet models in the H → WW → eνμν channel with the ATLAS detector, ATLAS-CONF-2013-027 (2013).

  43. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  44. C. Kao, Production of a pseudoscalar Higgs with a Z boson from gluon fusion, Phys. Rev. D 46 (1992) 4907 [INSPIRE].

    ADS  Google Scholar 

  45. J. Yin, W.-G. Ma, R.-Y. Zhang and H.-S. Hou, A0 Z0 associated production at the Large Hadron collider in the minimal supersymmetric standard model, Phys. Rev. D 66 (2002) 095008 [hep-ph/0209279] [INSPIRE].

    ADS  Google Scholar 

  46. C. Kao, G. Lovelace and L.H. Orr, Detecting a Higgs pseudoscalar with a Z boson at the LHC, Phys. Lett. B 567 (2003) 259 [hep-ph/0305028] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Kao and S. Sachithanandam, Detecting a Higgs pseudoscalar with a Z boson produced in bottom quark fusion, Phys. Lett. B 620 (2005) 80 [hep-ph/0411331] [INSPIRE].

    Article  ADS  Google Scholar 

  48. L.L. Yang, C.S. Li, J.J. Liu and L.G. Jin, Production of scalar Higgs bosons associated with Z0 boson at the CERN LHC in the MSSM, J. Phys. G 30 (2004) 1821 [hep-ph/0312179] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Q. Li, C.S. Li, J.J. Liu, L.G. Jin and C.-P. Yuan, Next-to-leading order QCD predictions for A0 Z0 associated production at the CERN Large Hadron Collider, Phys. Rev. D 72 (2005) 034032 [hep-ph/0501070] [INSPIRE].

    ADS  Google Scholar 

  50. B.A. Kniehl and C.P. Palisoc, Associated production of Z and neutral Higgs bosons at the CERN Large Hadron Collider, Phys. Rev. D 85 (2012) 075027 [arXiv:1112.1575] [INSPIRE].

    ADS  Google Scholar 

  51. O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo — Higgs strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998 [arXiv:1210.5347] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  53. R. Hamberg, W. van Neerven and T. Matsuura, A Complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403-404] [INSPIRE].

    Article  ADS  Google Scholar 

  54. O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].

    Article  ADS  Google Scholar 

  55. L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, JHEP 02 (2013) 078 [arXiv:1211.5015] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  58. D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    Article  ADS  Google Scholar 

  59. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  60. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  61. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  62. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    Article  ADS  Google Scholar 

  63. D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator, Comput. Phys. Commun. 181 (2010) 833 [INSPIRE].

    Article  ADS  Google Scholar 

  65. R. Harlander, M. Krämer and M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach, arXiv:1112.3478 [INSPIRE].

  66. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. O. Brein et al., Precision calculations for associated WH and ZH production at hadron colliders, hep-ph/0402003 [INSPIRE].

  70. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  71. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  72. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  73. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  74. S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 01 (2013) 088 [arXiv:1211.0499] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP 07 (2013) 073 [arXiv:1304.1822] [INSPIRE].

    Article  ADS  Google Scholar 

  76. C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, arXiv:1310.4828 [INSPIRE].

  77. G.Ferrera, private communication.

  78. R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Fachbereich C, Bergische Universität Wuppertal, 42097, Wuppertal, Germany

    Robert V. Harlander, Stefan Liebler & Tom Zirke

Authors
  1. Robert V. Harlander
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stefan Liebler
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tom Zirke
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Stefan Liebler.

Additional information

ArXiv ePrint: 1307.8122

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Harlander, R.V., Liebler, S. & Zirke, T. Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-doublet model. J. High Energ. Phys. 2014, 23 (2014). https://doi.org/10.1007/JHEP02(2014)023

Download citation

  • Received: 15 August 2013

  • Revised: 17 December 2013

  • Accepted: 13 January 2014

  • Published: 05 February 2014

  • DOI: https://doi.org/10.1007/JHEP02(2014)023

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
  • Hadronic Colliders
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.