Skip to main content
Log in

Strange couplings to the Higgs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore the coupling of the strange quark to the state of mass close to 126 GeV recently observed by the ATLAS and CMS experiments at the LHC. An enhanced coupling relative to the expectations for a SM Higgs has the effect of increasing both the inclusive production cross section and the partial decay width into jets. For very large modifications, the latter dominates and the net rate into non-jet decay modes such as diphotons is suppressed, with the result that one can use observations of the diphoton decay mode to place an upper limit on the strange quark coupling. We find that the current observations of the diphoton decay mode imply that the coupling of the new resonance to strange quarks can be at most ~ 50 times the SM expectation at the 95% C.L., if one assumes at most a \( \mathcal{O}(1) \) modification of the coupling to gluons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  6. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  9. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].

    ADS  Google Scholar 

  10. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  11. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, arXiv:1208.3436 [INSPIRE].

  12. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  13. E.L. Berger, C.-W. Chiang, J. Jiang, T.M. Tait and C.E. Wagner, Higgs boson decay into hadronic jets, Phys. Rev. D 66 (2002) 095001 [hep-ph/0205342] [INSPIRE].

    ADS  Google Scholar 

  14. J. Lee, Y. Peters, A. Pilaftsis and C. Schwanenberger, Strangephilic Higgs bosons in the MSSM, Eur. Phys. J. C 66 (2010) 261 [arXiv:0909.1749] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L.M. Carpenter and J. Goodman, Pseudo-Higgs signals a the LHC, arXiv:1205.5555 [INSPIRE].

  16. D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].

    ADS  Google Scholar 

  17. B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].

    ADS  Google Scholar 

  18. S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

    ADS  Google Scholar 

  19. R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].

  20. A. Alves, Is the new resonance spin 0 or 2? Taking a step forward in the Higgs boson discovery, Phys. Rev. D 86 (2012) 113010 [arXiv:1209.1037] [INSPIRE].

    ADS  Google Scholar 

  21. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Graudenz, M. Spira and P. M. Zerwas, QCD corrections to Higgs-boson production at proton-proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Djouadi, The anatomy of electroweak symmetry breaking. Tome I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1.

    Article  ADS  Google Scholar 

  26. A. Djouadi, The anatomy of electroweak symmetry breaking. Tome II: the Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1.

    Article  ADS  Google Scholar 

  27. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  28. H.-Q. Zheng and D.-D. Wu, First order QCD corrections to the decay of the Higgs boson into two photons, Phys. Rev. D 42 (1990) 3760 [INSPIRE].

    ADS  Google Scholar 

  29. A. Djouadi, M. Spira, J. van der Bij and P. Zerwas, QCD corrections to gamma gamma decays of Higgs particles in the intermediate mass range, Phys. Lett. B 257 (1991) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Dawson and R. Kauffman, QCD corrections to Hγγ, Phys. Rev. D 47 (1993) 1264 [INSPIRE].

    ADS  Google Scholar 

  31. A. Djouradi, M. Spira and P.M. Zerwas, Two photon decay widths of Higgs particles, Phys. Lett. B 311 (1993) 255 [hep-ph/9305335] [INSPIRE].

    Article  ADS  Google Scholar 

  32. CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012).

  33. H.-J. He, C.T. Hill and T.M. Tait, Top quark seesaw, vacuum structure and electroweak precision constraints, Phys. Rev. D 65 (2002) 055006 [hep-ph/0108041] [INSPIRE].

    ADS  Google Scholar 

  34. H. Fusaoka and Y. Koide, Updated estimate of running quark masses, Phys. Rev. D 57 (1998) 3986 [hep-ph/9712201] [INSPIRE].

    ADS  Google Scholar 

  35. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  36. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  37. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Meng.

Additional information

ArXiv ePrint: 1210.3373

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Y., Rajaraman, A., Surujon, Z. et al. Strange couplings to the Higgs. J. High Energ. Phys. 2013, 138 (2013). https://doi.org/10.1007/JHEP02(2013)138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)138

Keywords

Navigation