Skip to main content
Log in

Cascade textures and SUSY SO(10) GUT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We give texture analyses of cascade hierarchical mass matrices in supersymmetric SO(10) grand unified theory. We embed cascade mass textures of the standard model fermion with right-handed neutrinos into the theory, which gives relations among the mass matrices of the fermions. The related phenomenologies, such as the lepton flavor violating processes and leptogenesis, are also investigated in addition to the PMNS mixing angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  2. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  3. P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].

    ADS  Google Scholar 

  4. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  5. S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [SPIRES].

    Article  ADS  Google Scholar 

  6. I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [SPIRES].

    Article  ADS  Google Scholar 

  7. E. Ma, Neutrino mass matrix from S 4 symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231] [SPIRES].

    ADS  Google Scholar 

  8. A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [SPIRES].

    Article  ADS  Google Scholar 

  10. E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [SPIRES].

    ADS  Google Scholar 

  11. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.E. Kim and J.-C. Park, Quantum numbers of heavy neutrinos, tri-bi-maximal mixing through double seesaw with permutation symmetry and comment on θ sol + θ c π/4, JHEP 05 (2006) 017 [hep-ph/0512130] [SPIRES].

    Article  ADS  Google Scholar 

  13. I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [SPIRES].

    ADS  Google Scholar 

  14. R.N. Mohapatra, S. Nasri and H.-B. Yu, S 3 symmetry and tri-bimaximal mixing, Phys. Lett. B 639 (2006) 318 [hep-ph/0605020] [SPIRES].

    ADS  Google Scholar 

  15. I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [SPIRES].

    ADS  Google Scholar 

  16. E. Ma, Suitability of A 4 as a family symmetry in grand unification, Mod. Phys. Lett. A 21 (2006) 2931 [hep-ph/0607190] [SPIRES].

    ADS  Google Scholar 

  17. G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [SPIRES].

    Article  ADS  Google Scholar 

  18. H. Zhang, Flavor S 4 × Z 2 symmetry and neutrino mixing, Phys. Lett. B 655 (2007) 132 [hep-ph/0612214] [SPIRES].

    ADS  Google Scholar 

  19. P.D. Carr and P.H. Frampton, Group theoretic bases for tribimaximal mixing, hep-ph/0701034 [SPIRES].

  20. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry, Nucl. Phys. B 775 (2007) 120 [Erratum ibid. 836 (2010) 127] [hep-ph/0702194] [SPIRES].

    Article  ADS  Google Scholar 

  21. M.-C. Chen and K.T. Mahanthappa, CKM and tri-bimaximal MNS matrices in a SU(5) × T (d) model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [SPIRES].

    ADS  Google Scholar 

  22. C. Luhn, S. Nasri and P. Ramond, Tri-bimaximal neutrino mixing and the family symmetry Z 7Z 3, Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [SPIRES].

    ADS  Google Scholar 

  23. Y. Koide, Broken SU(3) flavor symmetry and tribimaximal neutrino mixing, arXiv:0707.0899 [SPIRES].

  24. E. Ma, Near tribimaximal neutrino mixing with Δ27 symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [SPIRES].

    ADS  Google Scholar 

  25. F. Bazzocchi, S. Morisi and M. Picariello, Embedding A 4 into left-right flavor symmetry: tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928] [SPIRES].

    ADS  Google Scholar 

  26. F. Plentinger, G. Seidl and W. Winter, Group space scan of flavor symmetries for nearly tribimaximal lepton mixing, JHEP 04 (2008) 077 [arXiv:0802.1718] [SPIRES].

    Article  Google Scholar 

  27. F. Plentinger and G. Seidl, Mapping out SU(5) GUTs with non-Abelian discrete flavor symmetries, Phys. Rev. D 78 (2008) 045004 [arXiv:0803.2889] [SPIRES].

    ADS  Google Scholar 

  28. S. Antusch, S.F. King and M. Malinsky, Third family corrections to quark and lepton mixing in SUSY models with non-abelian family symmetry, JHEP 05 (2008) 066 [arXiv:0712.3759] [SPIRES].

    Article  ADS  Google Scholar 

  29. Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [SPIRES].

    Article  ADS  Google Scholar 

  30. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A 4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].

    Article  ADS  Google Scholar 

  31. T. Araki and R. Takahashi, Tri-bimaximal mixing from twisted Friedberg-Lee symmetry, Eur. Phys. J. C 63 (2009) 521 [arXiv:0811.0905] [SPIRES].

    Article  ADS  Google Scholar 

  32. W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only, JHEP 04 (2009) 013 [arXiv:0811.4766] [SPIRES].

    Article  ADS  Google Scholar 

  33. H. Ishimori, Y. Shimizu and M. Tanimoto, S 4 flavor symmetry of quarks and leptons in SU(5) GUT, Prog. Theor. Phys. 121 (2009) 769 [arXiv:0812.5031] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  34. S. Morisi, Tri-bimaximal lepton mixing with A4 semidirect product Z 2 × Z 2 × Z 2, Phys. Rev. D 79 (2009) 033008 [arXiv:0901.1080] [SPIRES].

    ADS  Google Scholar 

  35. F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S 4 -based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].

    Article  ADS  Google Scholar 

  36. K. Kojima and H. Sawanaka, Probing neutrino masses and tri-bimaximality with lepton flavor violation searches, Phys. Lett. B 678 (2009) 373 [arXiv:0901.4812] [SPIRES].

    ADS  Google Scholar 

  37. F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological consequences of see-saw in S 4 based models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [SPIRES].

    ADS  Google Scholar 

  38. A. Hayakawa, H. Ishimori, Y. Shimizu and M. Tanimoto, Deviation from tri-bimaximal mixing and flavor symmetry breaking in a seesaw type A 4 model, Phys. Lett. B 680 (2009) 334 [arXiv:0904.3820] [SPIRES].

    ADS  Google Scholar 

  39. G. Altarelli and D. Meloni, A simplest A 4 model for tri-bimaximal neutrino mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [SPIRES].

    ADS  Google Scholar 

  40. M. Hirsch, S. Morisi and J.W.F. Valle, A 4 -based tri-bimaximal mixing within inverse and linear seesaw schemes, Phys. Lett. B 679 (2009) 454 [arXiv:0905.3056] [SPIRES].

    ADS  Google Scholar 

  41. Y. Lin, Tri-bimaximal neutrino mixing from A 4 and θ 13θ C , Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Adulpravitchai, M. Lindner and A. Merle, Confronting flavour symmetries and extended scalar sectors with lepton flavour violation bounds, Phys. Rev. D 80 (2009) 055031 [arXiv:0907. 2147] [SPIRES].

    ADS  Google Scholar 

  43. A. Adulpravitchai, M. Lindner, A. Merle and R.N. Mohapatra, Radiative transmission of lepton flavor hierarchies, Phys. Lett. B 680 (2009) 476 [arXiv:0908.0470] [SPIRES].

    ADS  Google Scholar 

  44. D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-bimaximal lepton mixing and leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [SPIRES].

    Article  ADS  Google Scholar 

  45. T.J. Burrows and S.F. King, A 4 family symmetry from SU(5) SUSY GUTs in 6D, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A 4 models, JHEP 03 (2010) 084 [arXiv:0910.4058] [SPIRES].

    Article  ADS  Google Scholar 

  47. B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) grand unified theory of flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. Y. Lin, L. Merlo and A. Paris, Running effects on lepton mixing angles in flavour models with type I seesaw, Nucl. Phys. B 835 (2010) 238 [arXiv:0911.3037] [SPIRES].

    Article  ADS  Google Scholar 

  49. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in a supersymmetric model with A 4 flavour symmetry, arXiv:0911.3874 [SPIRES].

  50. A. Adulpravitchai and M.A. Schmidt, Flavored orbifold GUT — An SO(10) × S 4 model, JHEP 01 (2011) 106 [arXiv:1001.3172] [SPIRES].

    Article  ADS  Google Scholar 

  51. C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [SPIRES].

    Article  ADS  Google Scholar 

  52. H. Ishimori, K. Saga, Y. Shimizu and M. Tanimoto, Tri-bimaximal mixing and Cabibbo angle in S 4 flavor model with SUSY, Phys. Rev. D 81 (2010) 115009 [arXiv:1004.5004] [SPIRES].

    ADS  Google Scholar 

  53. G.-J. Ding, Adjoint SUSY SU(5) grand unified model with S 4 flavor symmetry, arXiv:1006.4800 [SPIRES].

  54. T.J. Burrows and S.F. King, A 4 × SU(5) SUSY GUT of flavour in 8D, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. Y. Shimizu and R. Takahashi, Deviations from tri-bimaximality and quark-lepton complementarity, arXiv:1009.5504 [SPIRES].

  56. T. Araki, J. Mei and Z.-z. Xing, Intrinsic deviation from the tri-bimaximal neutrino mixing in aclass of A 4 flavor models, Phys. Lett. B 695 (2011) 165 [arXiv:1010.3065] [SPIRES].

    ADS  Google Scholar 

  57. N. Haba, R. Takahashi, M. Tanimoto and K. Yoshioka, Tri-bimaximal mixing from cascades, Phys. Rev. D 78 (2008) 113002 [arXiv:0804.4055] [SPIRES].

    ADS  Google Scholar 

  58. K. Kojima, H. Sawanaka and R. Takahashi, Cascade hierarchy in SUSY SU(5) GUT, arXiv:1011.5678 [SPIRES].

  59. H. Georgi and C. J arlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

  60. C.S. Aulakh and R.N. Mohapatra, Implications of supersymmetric SO(10) grand unification, Phys. Rev. D 28 (1983) 217 [SPIRES].

    ADS  Google Scholar 

  61. T.E. Clark, T.-K. Kuo and N. Nakagawa, A SO(10) supersymmetric grand unified theory, Phys. Lett. B 115 (1982) 26 [SPIRES].

    ADS  Google Scholar 

  62. C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric grand unified theory, Phys. Lett. B 588 (2004) 196 [hep-ph/0306242] [SPIRES].

    ADS  Google Scholar 

  63. B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric grand unified theory. I: symmetry breaking and the particle spectrum, Phys. Rev. D 70 (2004) 035007 [hep-ph/0402122] [SPIRES].

    ADS  Google Scholar 

  64. M.-C. Chen and K.T. Mahanthappa, Fermion masses and mixing and CP-violation in SO(10) models with family symmetries, Int. J. Mod. Phys. A 18 (2003) 5819 [hep-ph/0305088] [SPIRES].

    ADS  Google Scholar 

  65. S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07 [SPIRES].

  66. Z. Chacko and R.N. Mohapatra, A new doublet-triplet splitting mechanism for supersymmetric SO(10) and implications for fermion masses, Phys. Rev. Lett. 82 (1999) 2836 [hep-ph/9810315] [SPIRES].

    Article  ADS  Google Scholar 

  67. D.-G. Lee and R.N. Mohapatra, Automatically R conserving supersymmetric SO(10) models and mixed light Higgs doublets, Phys. Rev. D 51 (1995) 1353 [hep-ph/9406328] [SPIRES].

    ADS  Google Scholar 

  68. T. Fukuyama et al., SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005) 033505 [hep-ph/0405300] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664 (2008) 97 [arXiv:0704.1248] [SPIRES].

    ADS  Google Scholar 

  70. R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [SPIRES].

    ADS  Google Scholar 

  71. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

    ADS  Google Scholar 

  72. M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [SPIRES].

    Article  ADS  Google Scholar 

  73. T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan β regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [SPIRES].

    ADS  Google Scholar 

  74. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].

    Article  ADS  Google Scholar 

  75. M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].

    Article  ADS  Google Scholar 

  76. M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [SPIRES].

    Article  ADS  Google Scholar 

  77. K. Tobe and J.D. Wells, Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [SPIRES].

    Article  ADS  Google Scholar 

  78. K. Inoue, K. Kojima and K. Yoshioka, Neutrino induced electroweak symmetry breaking in supersymmetric SO(10) unification, JHEP 07 (2006) 032 [hep-ph/0604096] [SPIRES].

    Article  ADS  Google Scholar 

  79. K. Inoue, K. Kojima and K. Yoshioka, Low-energy variety of asymmetric SUSY flavor structure, Phys. Lett. B 644 (2007) 172 [hep-ph/0610402] [SPIRES].

    ADS  Google Scholar 

  80. Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: a search for the neutrino mixing angle θ 13, hep-ex/0606025 [SPIRES].

  81. RENO collaboration, J.K. Ahn et al., RENO: an experiment for neutrino oscillation parameter θ 13 using reactor neutrinos at Yonggwang, arXiv:1003.1391 [SPIRES].

  82. Daya-Bay collaboration, X. Guo et al., A precision measurement of the neutrino mixing angle θ 13 using reactor antineutrinos at Daya Bay, hep-ex/0701029 [SPIRES].

  83. The T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [SPIRES].

  84. NOvA collaboration, D.S. Ayres et al., NOvA proposal to build a 30-kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI beamline, hep-ex/0503053 [SPIRES].

  85. M. Mezzetto and T. Schwetz, θ 13 : phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001 [arXiv:1003.5800] [SPIRES].

    ADS  Google Scholar 

  86. B. Dutta, Y. Mimura and R.N. Mohapatra, Origin of quark-lepton flavor in SO(10) with type II seesaw, Phys. Rev. D 80 (2009) 095021 [arXiv:0910.1043] [SPIRES].

    ADS  Google Scholar 

  87. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  88. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].

    ADS  Google Scholar 

  89. J.R. Ellis, M.E. Gomez, G.K. Leontaris, S. Lola and D.V. Nanopoulos, Charged lepton flavour violation in the light of the Super-Kamiokande data, Eur. Phys. J. C 14 (2000) 319 [hep-ph/9911459] [SPIRES].

    Article  ADS  Google Scholar 

  90. MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ +e γ +, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].

    Article  ADS  Google Scholar 

  91. Belle collaboration, K. Hayasaka et al., New search for τμγ and τeγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [SPIRES].

    ADS  Google Scholar 

  92. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  93. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].

    ADS  Google Scholar 

  94. W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B 389 (1996) 73 [hep-ph/9608308] [SPIRES].

    ADS  Google Scholar 

  95. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [SPIRES].

    ADS  Google Scholar 

  96. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].

    Article  ADS  Google Scholar 

  97. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].

    Article  ADS  Google Scholar 

  98. S. Blanchet, P.S.B. Dev and R.N. Mohapatra, Leptogenesis with TeV scale inverse seesaw in SO(10), Phys. Rev. D 82 (2010) 115025 [arXiv:1010.1471] [SPIRES].

    ADS  Google Scholar 

  99. R.N. Mohapatra, New contributions to neutrinoless double-β decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [SPIRES].

    ADS  Google Scholar 

  100. S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adisorn Adulpravitchai.

Additional information

ArXiv ePrint: 1012.1760

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adulpravitchai, A., Kojima, K. & Takahashi, R. Cascade textures and SUSY SO(10) GUT. J. High Energ. Phys. 2011, 86 (2011). https://doi.org/10.1007/JHEP02(2011)086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)086

Keywords

Navigation