Journal of High Energy Physics

, 2011:45 | Cite as

Maximal electric dipole moments of nuclei with enhanced Schiff moments

Open Access
Article

Abstract

The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 × 10−27e ∙ cm.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    T. Ibrahim and P. Nath, CP violation from standard model to strings, Rev. Mod. Phys. 80 (2008) 577 [arXiv:0705.2008] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200202 (2010) 185 [arXiv:1001.2693] [SPIRES].CrossRefGoogle Scholar
  3. [3]
    J.R. Ellis, J.S. Lee and A. Pilaftsis, B-meson observables in the maximally CP-violating MSSM with minimal flavour violation, Phys. Rev. D 76 (2007) 115011 [arXiv:0708.2079] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M. Argyrou, A.B. Lahanas and V.C. Spanos, Refining the predictions of supersymmetric CP-violating models: a top-down approach, JHEP 05 (2008) 026 [arXiv:0804.2613] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    W. Altmannshofer, A.J. Buras and P. Paradisi, Low energy probes of CP-violation in a flavor blind MSSM, Phys. Lett. B 669 (2008) 239 [arXiv:0808.0707] [SPIRES].ADSGoogle Scholar
  7. [7]
    L. Mercolli and C. Smith, EDM constraints on flavored CP-violating phases, Nucl. Phys. B 817 (2009) 1 [arXiv:0902.1949] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General minimal flavor violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [SPIRES].ADSGoogle Scholar
  9. [9]
    R. Zwicky and T. Fischbacher, On discrete minimal flavour violation, Phys. Rev. D 80 (2009) 076009 [arXiv:0908.4182] [SPIRES].ADSGoogle Scholar
  10. [10]
    T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. D 60 (19999) 099902] [hep-ph/9807501] [SPIRES].ADSGoogle Scholar
  11. [11]
    M. Brhlik, L.L. Everett, G.L. Kane and J.D. Lykken, A resolution to the supersymmetric CP problem with large soft phases via D-branes, Phys. Rev. Lett. 83 (1999) 2124 [hep-ph/9905215] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    J. Ellis, J.S. Lee and A. Pilaftsis, A geometric approach to CP-violation: applications to the MCPMFV SUSY model, JHEP 10 (2010) 049 [arXiv:1006.3087] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    J. Ellis, J.S. Lee and A. Pilaftsis, Note on a differential-geometrical construction of optimal directions in linearly-constrained systems, arXiv:1009.1151 [SPIRES].
  14. [14]
    L.I. Schiff, Measurability of nuclear electric dipole moments, Phys. Rev. 132 (1963) 2194.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L. Willmann, K. Jungmann and H.W. Wilschut, Searches for permanent electric dipole moments in Radium Isotopes, Letter of Intent to the ISOLDE and Neutron Time-of-Flight Experiments Committee for experiments with HIE-ISOLDE, CERN-INTC-2010-049/INTC-I-115.Google Scholar
  16. [16]
    J. Pakarinen et al., Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes, Letter of Intent to the ISOLDE and Neutron Time-of-Flight Experiments Committee for experiments with HIE-ISOLDE, CERN-INTC-2010-022/INTC-I-091.Google Scholar
  17. [17]
    I.B. Khriplovich and R.A. Korkin, P and T odd electromagnetic moments of deuteron in chiral limit, Nucl. Phys. A 665 (2000) 365 [nucl-th/9904081] [SPIRES].ADSGoogle Scholar
  18. [18]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [SPIRES].ADSMATHCrossRefGoogle Scholar
  19. [19]
    S. Ban, J. Dobaczewski, J. Engel and A. Shukla, Fully self-consistent calculations of nuclear Schiff moments, Phys. Rev. C 82 (2010) 015501 [arXiv:1003.2598] [SPIRES].ADSGoogle Scholar
  20. [20]
    V.F. Dmitriev and R.A. Sen’kov, P- and T-violating Schiff moment of the Mercury nucleus, Phys. Atom. Nucl. 66 (2003) 1940 [Yad. Fiz. 66 (2003) 1988] [nucl-th/0304048] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric dipole moments in the MSSM reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    J.S. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C.E.M. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    J.H. de Jesus and J. Engel, Time-reversal-violating Schiff moment of 199Hg, Phys. Rev. C 72 (2005) 045503 [nucl-th/0507031] [SPIRES].ADSGoogle Scholar
  25. [25]
    J. Engel, M. Bender, J. Dobaczewski, J.H. De Jesus and P. Olbratowski, Time-reversal violating Schiff moment of 225Ra, Phys. Rev. C 68 (2003) 025501 [nucl-th/0304075] [SPIRES].ADSGoogle Scholar
  26. [26]
    J. Dobaczewski and J. Engel, Nuclear time-reversal violation and the Schiff moment of 225Ra, Phys. Rev. Lett. 94 (2005) 232502 [nucl-th/0503057] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    V.F. Dmitriev, R.A. Sen’kov and N. Auerbach, Effects of core polarization on the nuclear Schiff moment, Phys. Rev. C 71 (2005) 035501 [nucl-th/0408065] [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Pospelov, Best values for the CP-odd meson nucleon couplings from supersymmetry, Phys. Lett. B 530 (2002) 123 [hep-ph/0109044] [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Pospelov and A. Ritz, private communication.Google Scholar
  30. [30]
    O. Lebedev and M. Pospelov, Electric dipole moments in the limit of heavy superpartners, Phys. Rev. Lett. 89 (2002) 101801 [hep-ph/0204359] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    D.A. Demir, O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in the MSSM at large tanβ, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    M.V. Romalis, W.C. Griffith and E.N. Fortson, A new limit on the permanent electric dipole moment of Hg-199, Phys. Rev. Lett. 86 (2001) 2505 [hep-ex/0012001] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    W.C. Griffith et al., Improved limit on the permanent electric dipole moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    V.V. Flambaum, I.B. Khriplovich and O.P. Sushkov, Limit on the constant of T nonconserving nucleon nucleon interaction, Phys. Lett. B 162 (1985) 213 [SPIRES].ADSGoogle Scholar
  35. [35]
    V.V. Flambaum, I.B. Khriplovich and O.P. Sushkov, On the P and T nonconserving nuclear moments, Nucl. Phys. A 449 (1986) 750 [SPIRES].ADSGoogle Scholar
  36. [36]
    V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges and M.G. Kozlov, Electric dipole moments of Hg, Xe, Rn, Ra, Pu and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions, Phys. Rev. A 66 (2002) 012111 [hep-ph/0203202] [SPIRES].ADSGoogle Scholar
  37. [37]
    K.V.P. Latha, D. Angom, B.P. Das and D. Mukherjee, Probing CP-violation with the electric dipole moment of atomic mercury, Phys. Rev. Lett. 103 (2009) 083001 [arXiv:0902.4790] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, arXiv:1101.1628 [SPIRES].
  39. [39]
    M. Battaglia et al., Proposed post-LEP benchmarks for supersymmetry, Eur. Phys. J. C 22 (2001) 535 [hep-ph/0106204] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    N. Ghodbane and H.-U. Martyn, Compilation of SUSY particle spectra from Snowmass 2001 benchmark models, in the proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics, June 30–July 21, Snowmass, U.S.A. (2001), hep-ph/0201233 [SPIRES].
  42. [42]
    M. Battaglia et al., Updated post-WMAP benchmarks for supersymmetry, Eur. Phys. J. C 33 (2004) 273 [hep-ph/0306219] [SPIRES].ADSGoogle Scholar
  43. [43]
    B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev. D 70 (2004) 016003 [hep-ph/0402023] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • John Ellis
    • 1
    • 2
  • Jae Sik Lee
    • 3
  • Apostolos Pilaftsis
    • 4
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Theoretical Particle Physics and Cosmology Group, Department of PhysicsKing’s College LondonLondonU.K.
  3. 3.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan
  4. 4.School of Physics and AstronomyUniversity of ManchesterManchesterU.K.

Personalised recommendations