Abstract
We analyze LHC data in order to constrain the parameter space of new spin-2 particles universally coupled to the energy-momentum tensor. These new hypothetical particles are the so-called hidden gravitons, whose phenomenology at low energies is determined by two parameters: its mass and its dimensional coupling constant. Hidden gravitons arise in many different extensions of the Standard Model of particles and interactions and General Relativity. Their phenomenology has been studied mainly in relation to modifications of gravity and astrophysical signatures. In this work, we extend the constraints for heavy hidden gravitons, with masses larger than 1 GeV, by taking into account events collected by ATLAS and CMS in the WW channel, Drell-Yan processes, and the diphoton channel from proton-proton collisions at \( \sqrt{s} \) = 8 TeV.
References
J.L. Bernal, L. Verde and A.G. Riess, The trouble with H0, JCAP 10 (2016) 019 [arXiv:1607.05617] [INSPIRE].
L. Verde, T. Treu and A.G. Riess, Tensions between the Early and the Late Universe, Nature Astron. 3 (2019) 891.
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].
D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].
C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].
L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept. 796 (2019) 1 [arXiv:1807.01725] [INSPIRE].
L. Heisenberg, Generalization of the Proca Action, JCAP 05 (2014) 015 [arXiv:1402.7026] [INSPIRE].
J. Beltran Jimenez and L. Heisenberg, Generalized multi-Proca fields, Phys. Lett. B 770 (2017) 16 [arXiv:1610.08960] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].
L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].
H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum Gauge Hierarchy Model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [INSPIRE].
J. Garriga and T. Tanaka, Gravity in the brane world, Phys. Rev. Lett. 84 (2000) 2778 [hep-th/9911055] [INSPIRE].
S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].
S.F. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].
S.F. Hassan, A. Schmidt-May and M. von Strauss, On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity, JHEP 05 (2013) 086 [arXiv:1208.1515] [INSPIRE].
A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].
C. García-García, A.L. Maroto and P. Martín-Moruno, Cosmology with moving bimetric fluids, JCAP 12 (2016) 022 [arXiv:1608.06493] [INSPIRE].
J.A.R. Cembranos, A.L. Maroto and H. Villarrubia-Rojo, Constraints on hidden gravitons from fifth-force experiments and stellar energy loss, JHEP 09 (2017) 104 [arXiv:1706.07818] [INSPIRE].
G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].
P. de Aquino, K. Hagiwara, Q. Li and F. Maltoni, Simulating graviton production at hadron colliders, JHEP 06 (2011) 132 [arXiv:1101.5499] [INSPIRE].
Y. Tang, Implications of LHC Searches for Massive Graviton, JHEP 08 (2012) 078 [arXiv:1206.6949] [INSPIRE].
M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].
C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].
C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].
CMS collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at \( \sqrt{s} \) = 8 TeV using H → WW decays, JHEP 03 (2017) 032 [arXiv:1606.01522] [INSPIRE].
ATLAS collaboration, Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 08 (2016) 009 [arXiv:1606.01736] [INSPIRE].
ATLAS collaboration, Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 112005 [arXiv:1704.03839] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2108.00930
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cembranos, J.A.R., Delgado, R.L. & Villarrubia-Rojo, H. LHC constraints on hidden gravitons. J. High Energ. Phys. 2022, 129 (2022). https://doi.org/10.1007/JHEP01(2022)129
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2022)129
Keywords
- Phenomenology of Field Theories in Higher Dimensions
- Phenomenology of Large extra dimensions