Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
LHC constraints on hidden gravitons
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Searches for Physics Beyond the Standard Model with the ATLAS Вetector at LHC

26 September 2019

M. Battaglia

UV constraints on massive spinning particles: lessons from the gravitino

28 February 2020

Scott Melville, Diederik Roest & David Stefanyszyn

Heavy neutral leptons in effective field theory and the high-luminosity LHC

07 September 2021

Giovanna Cottin, Juan Carlos Helo, … Zeren Simon Wang

Heavy spinning particles from signs of primordial non-gaussianities: beyond the positivity bounds

13 December 2019

Suro Kim, Toshifumi Noumi, … Siyi Zhou

The past, present and future of the heavier electroweakinos in the light of LHC and other data

11 January 2019

Amitava Datta & Nabanita Ganguly

The Higgs trilinear coupling and the scale of new physics

24 March 2020

Spencer Chang & Markus A. Luty

Constraining the $${\mathcal {C}}{\mathcal {P}}$$ C P structure of Higgs-fermion couplings with a global LHC fit, the electron EDM and baryogenesis

10 July 2022

Henning Bahl, Elina Fuchs, … Georg Weiglein

The scale of new physics from the Higgs couplings to γγ and γZ

16 June 2022

Fayez Abu-Ajamieh

Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb−1 of pp collision data at s $$ \sqrt{s} $$ = 13 TeV

07 March 2022

The ATLAS collaboration, G. Aad, … L. Zwalinski

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 24 January 2022

LHC constraints on hidden gravitons

  • J. A. R. Cembranos1,
  • R. L. Delgado2,3,4 &
  • H. Villarrubia-Rojo5 

Journal of High Energy Physics volume 2022, Article number: 129 (2022) Cite this article

  • 103 Accesses

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We analyze LHC data in order to constrain the parameter space of new spin-2 particles universally coupled to the energy-momentum tensor. These new hypothetical particles are the so-called hidden gravitons, whose phenomenology at low energies is determined by two parameters: its mass and its dimensional coupling constant. Hidden gravitons arise in many different extensions of the Standard Model of particles and interactions and General Relativity. Their phenomenology has been studied mainly in relation to modifications of gravity and astrophysical signatures. In this work, we extend the constraints for heavy hidden gravitons, with masses larger than 1 GeV, by taking into account events collected by ATLAS and CMS in the WW channel, Drell-Yan processes, and the diphoton channel from proton-proton collisions at \( \sqrt{s} \) = 8 TeV.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.L. Bernal, L. Verde and A.G. Riess, The trouble with H0, JCAP 10 (2016) 019 [arXiv:1607.05617] [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Verde, T. Treu and A.G. Riess, Tensions between the Early and the Late Universe, Nature Astron. 3 (2019) 891.

    Article  ADS  Google Scholar 

  3. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  4. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

  5. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

  6. P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].

  7. D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

  9. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

  10. L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept. 796 (2019) 1 [arXiv:1807.01725] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Heisenberg, Generalization of the Proca Action, JCAP 05 (2014) 015 [arXiv:1402.7026] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Beltran Jimenez and L. Heisenberg, Generalized multi-Proca fields, Phys. Lett. B 770 (2017) 16 [arXiv:1610.08960] [INSPIRE].

    Article  ADS  Google Scholar 

  13. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

  14. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

  15. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].

  16. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  17. L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum Gauge Hierarchy Model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [INSPIRE].

  19. J. Garriga and T. Tanaka, Gravity in the brane world, Phys. Rev. Lett. 84 (2000) 2778 [hep-th/9911055] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S.F. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S.F. Hassan, A. Schmidt-May and M. von Strauss, On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity, JHEP 05 (2013) 086 [arXiv:1208.1515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].

  24. C. García-García, A.L. Maroto and P. Martín-Moruno, Cosmology with moving bimetric fluids, JCAP 12 (2016) 022 [arXiv:1608.06493] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. J.A.R. Cembranos, A.L. Maroto and H. Villarrubia-Rojo, Constraints on hidden gravitons from fifth-force experiments and stellar energy loss, JHEP 09 (2017) 104 [arXiv:1706.07818] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].

  27. P. de Aquino, K. Hagiwara, Q. Li and F. Maltoni, Simulating graviton production at hadron colliders, JHEP 06 (2011) 132 [arXiv:1101.5499] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Y. Tang, Implications of LHC Searches for Massive Graviton, JHEP 08 (2012) 078 [arXiv:1206.6949] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

  30. C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Article  Google Scholar 

  31. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  32. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  33. DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  34. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].

    Article  ADS  Google Scholar 

  36. CMS collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at \( \sqrt{s} \) = 8 TeV using H → WW decays, JHEP 03 (2017) 032 [arXiv:1606.01522] [INSPIRE].

  37. ATLAS collaboration, Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 08 (2016) 009 [arXiv:1606.01736] [INSPIRE].

  38. ATLAS collaboration, Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 112005 [arXiv:1704.03839] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Departamento de Física Teórica and Instituto de Física de Partículas y del Cosmos IPARCOS, Universidad Complutense de Madrid, E-28040, Madrid, Spain

    J. A. R. Cembranos

  2. Departamento de Matemática Aplicada a las TIC, ETSIST, Universidad Politécnica de Madrid, E-28040, Madrid, Spain

    R. L. Delgado

  3. Physik-Department T30f, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany

    R. L. Delgado

  4. INFN-Firenze, via G. Sansone, 1, 50019, Sesto Fiorentino (FI), Italia

    R. L. Delgado

  5. Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093, Zürich, Switzerland

    H. Villarrubia-Rojo

Authors
  1. J. A. R. Cembranos
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. R. L. Delgado
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. H. Villarrubia-Rojo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to H. Villarrubia-Rojo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2108.00930

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cembranos, J.A.R., Delgado, R.L. & Villarrubia-Rojo, H. LHC constraints on hidden gravitons. J. High Energ. Phys. 2022, 129 (2022). https://doi.org/10.1007/JHEP01(2022)129

Download citation

  • Received: 11 October 2021

  • Accepted: 29 December 2021

  • Published: 24 January 2022

  • DOI: https://doi.org/10.1007/JHEP01(2022)129

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenology of Field Theories in Higher Dimensions
  • Phenomenology of Large extra dimensions
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.