Skip to main content
Log in

Implications of LHC searches for massive graviton

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

With the latest LHC available results, we consider the generic constraints on massive graviton. Both dijet and dilepton resonance searches are used. The limits on parameter space can be applied to many models. As an illustration, we show the constraints for Randall-Sundrum (RS) model. Implications on massive graviton and the coupling strength are discussed. For k/M pl = 0.1, M G< 2.2 TeV region is excluded at 95% confidence level. We also present some interesting implications on the RS radion with respect to the 125 GeV excess at the LHC. For k/M pl = 0.1, \( {\Lambda_{\phi }} < {13}.{8} \) TeV is excluded where \( {\Lambda_{\phi }} \) is the scale to charactarize the interaction strengh of radion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  3. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  4. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. H. Davoudiasl, J. Hewett and T. Rizzo, Experimental probes of localized gravity: on and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].

    ADS  Google Scholar 

  8. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].

    ADS  Google Scholar 

  9. J.F. Gunion, M. Toharia and J.D. Wells, Precision electroweak data and the mixed radion-Higgs sector of warped extra dimensions, Phys. Lett. B 585 (2004) 295 [hep-ph/0311219] [INSPIRE].

    ADS  Google Scholar 

  10. M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].

    ADS  Google Scholar 

  11. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  13. I. Antoniadis, K. Benakli and M. Quirós, Direct collider signatures of large extra dimensions, Phys. Lett. B 460 (1999) 176 [hep-ph/9905311] [INSPIRE].

    ADS  Google Scholar 

  14. H. Davoudiasl, J. Hewett and T. Rizzo, Phenomenology of the Randall-Sundrum gauge hierarchy model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Accomando, I. Antoniadis and K. Benakli, Looking for TeV scale strings and extra dimensions, Nucl. Phys. B 579 (2000) 3 [hep-ph/9912287] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Bijnens, P. Eerola, M. Maul, A. Mansson and T. Sjöstrand, QCD signatures of narrow graviton resonances in hadron colliders, Phys. Lett. B 503 (2001) 341 [hep-ph/0101316] [INSPIRE].

    ADS  Google Scholar 

  17. B. Allanach, K. Odagiri, M.A. Parker and B. Webber, Searching for narrow graviton resonances with the ATLAS detector at the large hadron collider, JHEP 09 (2000) 019 [hep-ph/0006114] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  21. CMS Collaboration, Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  22. ATLAS collaboration, Search for high-mass dilepton resonances with 5 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS experiment, ATLAS-CONF-2012-007 (2012).

  23. Z. Chacko, M.A. Luty and E. Ponton, Massive higher dimensional gauge fields as messengers of supersymmetry breaking, JHEP 07 (2000) 036.

    Article  ADS  Google Scholar 

  24. K. Agashe, H. Davoudiasl, G. Perez and A. Soni, Warped gravitons at the LHC and beyond, Phys. Rev. D 76 (2007) 036006 [hep-ph/0701186] [INSPIRE].

    ADS  Google Scholar 

  25. Particle Data Group Collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  26. Thanks to prof. H.Y. Cheng for pointing out these.

  27. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  28. W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [INSPIRE].

    ADS  Google Scholar 

  29. V. Barger and M. Ishida, Randall-Sundrum Reality at the LHC, Phys. Lett. B 709 (2012) 185 [arXiv:1110.6452] [INSPIRE].

    ADS  Google Scholar 

  30. H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs searches, Phys. Rev. D 85 (2012) 053003 [arXiv:1111.2006] [INSPIRE].

    ADS  Google Scholar 

  31. V. Barger, M. Ishida and W.-Y. Keung, Differentiating the Higgs boson from the dilaton and the radion at hadron colliders, Phys. Rev. Lett. 108 (2012) 101802 [arXiv:1111.4473] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B. Grzadkowski, J.F. Gunion and M. Toharia, Higgs-radion interpretation of the LHC data?, Phys. Lett. B 712 (2012) 70 [arXiv:1202.5017] [INSPIRE].

    ADS  Google Scholar 

  34. M. Frank, B. Korutlu and M. Toharia, Saving the fourth generation Higgs with radion mixing, arXiv:1204.5944 [INSPIRE].

  35. Y. Tang, Comment onCould the excess seen at 124-126 GeV be due to the Randall-Sundrum radion?’, arXiv:1204.6145 [INSPIRE].

  36. H. Davoudiasl, T. McElmurry and A. Soni, The radion as a harbinger of deca-TeV physics, arXiv:1206.4062 [INSPIRE].

  37. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing various models of the 125 GeV boson in vector boson fusion, arXiv:1206.5853 [INSPIRE].

  38. G. Choudalakis, How to use experimental data to compute the probability of your theory, arXiv:1110.5295 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y. Implications of LHC searches for massive graviton. J. High Energ. Phys. 2012, 78 (2012). https://doi.org/10.1007/JHEP08(2012)078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)078

Keywords

Navigation