Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Unitarity of entanglement and islands in two-sided Janus black holes

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 25 January 2021
  • volume 2021, Article number: 155 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Unitarity of entanglement and islands in two-sided Janus black holes
Download PDF
  • Dongsu Bak1,4,
  • Chanju Kim2,
  • Sang-Heon Yi1,5 &
  • …
  • Junggi Yoon3 
  • 283 Accesses

  • 33 Citations

  • 10 Altmetric

  • 1 Mention

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We explore the entanglement evolution of boundary intervals in eternal Janus black holes that can be embedded consistently into string theory in the low-energy limit. By studying the geodesics we show that there is a transition in the entanglement characteristic around the Page time, which manifests the unitarity of the evolution. We reproduce and reinterpret these bulk results from two different lower-dimensional perspectives: first as an interface CFT in the usual AdS/CFT correspondence and second as an effective gravity theory in one lower dimension coupled to a radiation background. In the limit where the number of interface degrees of freedom becomes large, we obtain an effective theory on appropriate branes that replace the deep interior region in the bulk, coined the shadow region. In this effective theory, we also identify the island of the radiation entanglement wedge and verify the newly proposed quantum extremization method. Our model clarifies that double holography with gravity in two higher dimensions can be realized in a concrete and consistent way and that the occurrence of islands is natural in one higher dimension. Furthermore, our model reveals that there can be a transitional behavior of the Page curve before the Page time, which is related to the emergence of new matter degrees of freedom on the branes.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  2. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. R.M. Wald, On Particle Creation by Black Holes, Commun. Math. Phys. 45 (1975) 9 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. G. ’t Hooft, The Scattering matrix approach for the quantum black hole: An Overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].

  5. S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J. Polchinski, The Black Hole Information Problem, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, Boulder U.S.A. (2015), pg. 353 [arXiv:1609.04036] [INSPIRE].

  7. W.G. Unruh and R.M. Wald, Information Loss, Rept. Prog. Phys. 80 (2017) 092002 [arXiv:1703.02140] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Ashtekar, Black Hole evaporation: A Perspective from Loop Quantum Gravity, Universe 6 (2020) 21 [arXiv:2001.08833] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Maldacena, Black holes and quantum information, Nature Rev. Phys. 2 (2020) 123.

    Article  ADS  Google Scholar 

  10. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, arXiv:2006.06872 [INSPIRE].

  11. S.W. Hawking, The Unpredictability of Quantum Gravity, Commun. Math. Phys. 87 (1982) 395 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. T. Jacobson, Introduction to quantum fields in curved space-time and the Hawking effect, in School on Quantum Gravity, Valdivia Chile (2003), pg. 39 [gr-qc/0308048] [INSPIRE].

  13. T. Banks, L. Susskind and M.E. Peskin, Difficulties for the Evolution of Pure States Into Mixed States, Nucl. Phys. B 244 (1984) 125.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  19. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09 (2020) 002 [arXiv:1905.08255] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Bak, M. Gutperle and S. Hirano, A Dilatonic deformation of AdS5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Bak, M. Gutperle and R.A. Janik, Janus Black Holes, JHEP 10 (2011) 056 [arXiv:1109.2736] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  31. M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information radiation in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. V. Balasubramanian, A. Kar, O. Parrikar, G. Sárosi and T. Ugajin, Geometric secret sharing in a model of Hawking radiation, arXiv:2003.05448 [INSPIRE].

  33. J. Sully, M. Van Raamsdonk and D. Wakeham, BCFT entanglement entropy at large central charge and the black hole interior, arXiv:2004.13088 [INSPIRE].

  34. H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane, JHEP 10 (2020) 166 [arXiv:2006.04851] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  37. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black holes, JHEP 02 (2007) 068 [hep-th/0701108] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  44. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

  46. H. Liu and S. Vardhan, A dynamical mechanism for the Page curve from quantum chaos, arXiv:2002.05734 [INSPIRE].

  47. L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. P. Hayden et al., Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality, Commun. Math. Phys. 246 (2004) 359.

  49. P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. M. Chiodaroli, J. Estes and Y. Korovin, Holographic two-point functions for Janus interfaces in the D1/D5 CFT, JHEP 04 (2017) 145 [arXiv:1612.08916] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. D. Mazáč, L. Rastelli and X. Zhou, An analytic approach to BCFTd, JHEP 12 (2019) 004 [arXiv:1812.09314] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Alishahiha, A. Faraji Astaneh and A. Naseh, Island in the Presence of Higher Derivative Terms, arXiv:2005.08715 [INSPIRE].

  54. C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat Space, arXiv:2005.02993 [INSPIRE].

  55. F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, New York U.S.A. (2010).

    MATH  Google Scholar 

  56. I. Papadimitriou, Janus effective action, unpublished note.

  57. I. Papadimitriou, Lectures on Holographic Renormalization, Springer Proc. Phys. 176 (2016) 131 [INSPIRE].

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department, University of Seoul, Seoul, 02504, South Korea

    Dongsu Bak & Sang-Heon Yi

  2. Department of Physics, Ewha Womans University, Seoul, 03760, South Korea

    Chanju Kim

  3. School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-ku, Seoul, 02455, South Korea

    Junggi Yoon

  4. Natural Science Research Institute, University of Seoul, Seoul, 02504, South Korea

    Dongsu Bak

  5. Center for Quantum Spacetime, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, South Korea

    Sang-Heon Yi

Authors
  1. Dongsu Bak
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Chanju Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sang-Heon Yi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Junggi Yoon
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sang-Heon Yi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.11717

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, D., Kim, C., Yi, SH. et al. Unitarity of entanglement and islands in two-sided Janus black holes. J. High Energ. Phys. 2021, 155 (2021). https://doi.org/10.1007/JHEP01(2021)155

Download citation

  • Received: 16 July 2020

  • Revised: 08 December 2020

  • Accepted: 10 December 2020

  • Published: 25 January 2021

  • DOI: https://doi.org/10.1007/JHEP01(2021)155

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • 2D Gravity

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature