Abstract
We present an analytic calculation of the layer (parallel) susceptibility at the extraordinary transition in a semi-infinite system with a flat boundary. Using the method of integral transforms put forward by McAvity and Osborn [Nucl. Phys. B 455 (1995) 522] in the boundary CFT, we derive the coordinate-space representation of the mean-field propagator at the transition point. The simple algebraic structure of this function provides a practical possibility of higher-order calculations. Thus we calculate the explicit expression for the layer susceptibility at the extraordinary transition in the one-loop approximation. Our result is correct up to order O(ε) of the ε = 4 − d expansion and holds for arbitrary width of the layer and its position in the half-space. We discuss the general structure of our result and consider the limiting cases related to the boundary operator expansion and (bulk) operator product expansion. We compare our findings with previously known results and less complicated formulas in the case of the ordinary transition. We believe that analytic results for layer susceptibilities could be a good starting point for efficient calculations of two-point correlation functions. This possibility would be of great importance given the recent breakthrough in bulk and boundary conformal field theories in general dimensions.
Article PDF
References
T. Fulton, F. Rohrlich and L. Witten, Conformal invariance in physics, Rev. Mod. Phys. 34 (1962) 442 [INSPIRE].
H.A. Kastrup, On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics, Annalen der Physik 17 (2008) 631.
A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381.
J.L. Cardy, Conformal invariance, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 11, pp. 55–126, Academic Press, London, U.K. (1987).
P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, Berlin, Germany (1997).
M. Henkel, Conformal invariance and critical phenomena, in Texts and Monographs in Physics, Springer, Berlin, Germany (1999).
Y. Nakayama, Scale invariance vs conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].
A.A. Migdal, Conformal invariance and bootstrap, Phys. Lett. B 37 (1971) 386 [INSPIRE].
G. Parisi and L. Peliti, Calculation of critical indices, Lett. Nuovo Cim. 2 (1971) 627.
K.G. Wilson, Non-Lagrangian models of current algebra, Phys. Rev. 179 (1969) 1499 [INSPIRE].
L.P. Kadanoff, Operator algebra and the determination of critical indices, Phys. Rev. Lett. 23 (1969) 1430 [INSPIRE].
L.P. Kadanoff and H. Ceva, Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B 3 (1971) 3918 [INSPIRE].
G.F. Chew, “Bootstrap”: A scientific idea?, Science 161 (1968) 762 [INSPIRE].
G. Mack, Conformal invariance and short distance behavior in quantum field theory, in Strong interaction physics, pp. 300–334, Springer (1973).
G. Mack, Conformal Field Theory in D > 2 dimensions, representations and harmonic analysis, arXiv:1902.03812 [INSPIRE].
G. Parisi, On self-consistency conditions in conformal covariant field theory, Lett. Nuovo Cim. 4S2 (1972) 777 [INSPIRE].
K. Symanzik, On calculations in conformal invariant field theories, Lett. Nuovo Cim. 3 (1972) 734 [INSPIRE].
S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].
G. Mack and I.T. Todorov, Conformal-invariant Green functions without ultraviolet divergences, Phys. Rev. D 8 (1973) 1764 [INSPIRE].
A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 39 (1974) 23.
G. Mack, Duality in quantum field theory, Nucl. Phys. B 118 (1977) 445 [INSPIRE].
E.S. Fradkin and M. Palchik, Recent developments in conformal invariant quantum field theory, Phys. Rept. 44 (1978) 249 [INSPIRE].
E.S. Fradkin and M. Palchik, New developments in D-dimensional conformal quantum field theory, Phys. Rept. 300 (1998) 1 [INSPIRE].
M. D’Eramo, G. Parisi and L. Peliti, Theoretical predictions for critical exponents at the λ-point of Bose liquids, Lett. Nuovo Cim. 2 (1971) 878 [INSPIRE].
G. Parisi and L. Peliti, Critical indices for the spherical model from conformal covariant self consistency conditions, Phys. Lett. A 41 (1972) 331.
A.N. Vasiliev, Y. Pismak and Y. Khonkonen, 1/n expansion: calculation of the exponent η in the order 1/n3 by the conformal bootstrap method, Theor. Math. Phys. 50 (1982) 127 [INSPIRE].
A.N. Vasiliev, S.E. Derkachov, N.A. Kivel and A.S. Stepanenko, The 1/n expansion in the Gross-Neveu model: Conformal bootstrap calculation of the index η in order 1/n3, Theor. Math. Phys. 94 (1993) 127 [INSPIRE].
J.A. Gracey, Computation of β′(gc) at O(1/N2) in the O(N) Gross-Neveu model in arbitrary dimensions, Int. J. Mod. Phys. A 09 (1994) 567.
J.A. Gracey, Computation of critical exponent η at O(1/N3) in the four-Fermi model in arbitrary dimensions, Int. J. Mod. Phys. A 09 (1994) 727.
J.A. Gracey, Large N critical exponents for the chiral Heisenberg Gross-Neveu universality class, Phys. Rev. D 97 (2018) 105009 [arXiv:1801.01320] [INSPIRE].
A.N. Vasiliev, Quantum Field Renormalization Group in the Theory of Critical Behavior and Stochastic Dynamics, 1st ed., PINF Publ., St-Petersburg, Russia (1998).
J.A. Gracey, Large Nf quantum field theory, Int. J. Mod. Phys. A 33 (2018) 1830032 [arXiv:1812.05368] [INSPIRE].
K. Lang and W. Rühl, The critical O(N) σ-model at dimension 2 < d < 4 and order 1/N2: Operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
A.M. Polyakov, A.A. Belavin and A.B. Zamolodchikov, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Statist. Phys. 34 (1984) 763 [INSPIRE].
A.B. Zamolodchikov and Al. B. Zamolodchikov, Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems, Soviet Scientific Reviews, Harwood Academic, U.K. (1989).
E. Brezin and J. Zinn-Justin, eds., Fields, strings and critical phenomena. Proceedings, 49th Session of the Les Houches Summer School in Theoretical Physics, NATO Advanced Study Institute, Les Houches, France, June 28 – August 5, 1988, France (1990).
C. Itzykson, H. Saleur and J.-B. Zuber, Conformal invariance and applications to statistical mechanics, World Scientific (1998).
P. Furlan, G.M. Sotkov and I. Todorov, Two-dimensional conformal quantum field theory, Riv. Nuovo Cim. 12 (2007) 1.
M.R. Gaberdiel, An introduction to conformal field theory, Rept. Prog. Phys. 63 (2000) 607 [hep-th/9910156] [INSPIRE].
M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Lecture Notes in Physics, Springer, Berlin, Heidelberg (2008).
J. Fuchs, I. Runkel and C. Schweigert, Twenty five years of two-dimensional rational conformal field theory, J. Math. Phys. 51 (2010) 015210.
E.S. Fradkin and M.Y. Palchik, Conformal Quantum Field Theory in D-dimensions, Mathematics and Its Applications, Springer, The Netherlands (2013).
J. Polchinski, String Theory: Volume 1, An Introduction to the Bosonic String, Cambridge Monographs on Mathematical Physics, Cambridge University Press (1998).
J. Polchinski, String Theory: Volume 2, Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, Cambridge University Press (1998).
M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory: Volume 1, Introduction: 25th Anniversary Edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2012).
M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and Phenomenology: 25th Anniversary Edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2012).
M. Kaku, Introduction to Superstrings, Graduate Texts in Contemporary Physics, Springer New York, U.S.A. (2012).
H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311.
A. Petkou, Conserved currents, consistency relations, and operator product expansions in the conformally invariant O(N) vector model, Annals Phys. 249 (1996) 180.
J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].
D.M. McAvity and H. Osborn, Energy–momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].
D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
E. Eisenriegler and M. Stapper, Critical behavior near a symmetry–breaking surface and the stress tensor, Phys. Rev. B 50 (1994) 10009.
J. Cardy, Finite-Size Scaling, Current Physics — Sources and Comments, Elsevier, Amsterdam, The Netherlands (1988).
M.E. Fisher and P.-G. de Gennes, Phénomènes aux parois dans un mélange binaire critique, C.R. Acad. Sci. Paris Série B 287 (1978) 207.
M. Krech, Casimir Effect in Critical Systems, World Scientific, Singapore (1994).
J.L. Cardy, Universal critical-point amplitudes in parallel-plate geometries, Phys. Rev. Lett. 65 (1990) 1443 [INSPIRE].
M. Kardar and R. Golestanian, The “friction” of vacuum, and other fluctuation-induced forces, Rev. Mod. Phys. 71 (1999) 1233 [cond-mat/9711071] [INSPIRE].
C. Hertlein, L. Helden, A. Gambassi, S. Dietrich and C. Bechinger, Direct measurement of critical Casimir forces, Nature 451 (2008) 172.
G. Bimonte, T. Emig and M. Kardar, Conformal field theory of critical Casimir interactions in 2D, EPL 104 (2013) 21001.
J.L. Jacobsen and J. Kondev, Field theory of compact polymers on the square lattice, Nucl. Phys. B 532 (1998) 635 [cond-mat/9804048] [INSPIRE].
E. Eisenriegler, Polymers Near Surfaces, World Scientific, Singapore (1993).
M. Henkel, Phenomenology of local scale invariance: From conformal invariance to dynamical scaling, Nucl. Phys. B 641 (2002) 405 [hep-th/0205256] [INSPIRE].
S. Rutkevich, H.W. Diehl and M.A. Shpot, On conjectured local generalizations of anisotropic scale invariance and their implications, Nucl. Phys. B 843 (2011) 255 [Erratum ibid. 853 (2011) 210] [arXiv:1005.1334] [INSPIRE].
D. Poland and D. Simmons-Duffin, The conformal bootstrap, Nature Phys. 12 (2016) 535.
D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, numerical techniques, and applications, Rev. Mod. Phys. 91 (2019) 015002.
R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from conformal bootstrap, JHEP 10 (2014) 042 [arXiv:1403.6003] [INSPIRE].
D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].
A. Castedo Echeverri, B. von Harling and M. Serone, The effective bootstrap, JHEP 09 (2016) 097 [arXiv:1606.02771] [INSPIRE].
F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].
M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari, Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods, Phys. Rev. B 74 (2006) 144506 [cond-mat/0605083] [INSPIRE].
M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi and E. Vicari, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B 65 (2002) 144520 [cond-mat/0110336] [INSPIRE].
M. Hasenbusch and E. Vicari, Anisotropic perturbations in three-dimensional O(N)-symmetric vector models, Phys. Rev. B 84 (2011) 125136.
S.M. Chester et al., Carving out OPE space and precise O(2) model critical exponents, JHEP 06 (2020) 142 [arXiv:1912.03324] [INSPIRE].
M.V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O(n)-symmetric ϕ4 theory and critical exponents, Phys. Rev. D 96 (2017) 036016 [arXiv:1705.06483] [INSPIRE].
K. Binder, Critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 8, pp. 1–144, Academic Press, London, U.K. (1983).
H.W. Diehl, Field–theoretical approach to critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 10, pp. 75–267, Academic Press, London, U.K. (1986).
H.W. Diehl, The theory of boundary critical phenomena, Int. J. Mod. Phys. B 11 (1997) 3503 [cond-mat/9610143] [INSPIRE].
J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].
D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372 (1992) 654 [INSPIRE].
H.W. Diehl and S. Dietrich, Field-theoretical approach to static critical phenomena in semi-infinite systems, Z. Phys. B 42 (1981) 65 [INSPIRE].
D.M. McAvity and H. Osborn, Quantum field theories on manifolds with curved boundaries: Scalar fields, Nucl. Phys. B 394 (1993) 728 [cond-mat/9206009] [INSPIRE].
P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].
G. Gompper and H. Wagner, Conformal invariance in semi-infinite systems: Application to critical surface scattering, Z. Phys. B 59 (1985) 193.
H.W. Diehl, Why boundary conditions do not generally determine the universality class for boundary critical behavior, Eur. Phys. J. B 93 (2020) 195 [arXiv:2006.15425] [INSPIRE].
D. Jasnow, Renormalization group theory of interfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 10, pp. 270–363, Academic Press, London, U.K. (1986).
P. Dey, T. Hansen and M. Shpot, Operator expansions, layer susceptibility and two-point functions in BCFT, JHEP 12 (2020) 051 [arXiv:2006.11253] [INSPIRE].
H.W. Diehl and M. Smock, Critical behavior at the extraordinary transition: Temperature singularity of surface magnetization and order–parameter profile to one–loop order, Phys. Rev. B 47 (1993) 5841.
H.W. Diehl and M. Shpot, Massive field-theory approach to surface critical behavior in three-dimensional systems, Nucl. Phys. B 528 (1998) 595 [cond-mat/9804083] [INSPIRE].
H.W. Diehl and M. Shpot, Surface critical behavior in fixed dimensions d < 4: Nonanalyticity of critical surface enhancement and massive field theory approach, Phys. Rev. Lett. 73 (1994) 3431 [cond-mat/9409064] [INSPIRE].
M. Shpot, Special surface transition: Massive field theory and critical exponents in three dimensions, Cond. Matt. Phys. (1997) 143.
F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].
F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents, JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].
M. Billó, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri and R. Pellegrini, Line defects in the 3d Ising model, JHEP 07 (2013) 055 [arXiv:1304.4110] [INSPIRE].
D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].
M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].
C.P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].
L. Rastelli and X. Zhou, The Mellin Formalism for Boundary CFTd, JHEP 10 (2017) 146 [arXiv:1705.05362] [INSPIRE].
D. Mazáč, L. Rastelli and X. Zhou, An analytic approach to BCFTd, JHEP 12 (2019) 004 [arXiv:1812.09314] [INSPIRE].
A. Kaviraj and M.F. Paulos, The Functional Bootstrap for Boundary CFT, JHEP 04 (2020) 135 [arXiv:1812.04034] [INSPIRE].
N. Andrei et al., Boundary and defect CFT: Open problems and applications, J. Phys. A 53 (2020) 453002 [arXiv:1810.05697] [INSPIRE].
A. Bissi, T. Hansen and A. Söderberg, Analytic Bootstrap for Boundary CFT, JHEP 01 (2019) 010 [arXiv:1808.08155] [INSPIRE].
V. Procházka and A. Söderberg, Composite operators near the boundary, JHEP 03 (2020) 114 [arXiv:1912.07505] [INSPIRE].
K. Ohno and Y. Okabe, Mirror theory of spin systems with a surface, J. Phys. A 18 (1985) L557.
T.C. Lubensky and M.H. Rubin, Critical phenomena in semi–infinite systems. II. Mean–field theory, Phys. Rev. B 12 (1975) 3885 [INSPIRE].
A.J. Bray and M.A. Moore, Critical behaviour of semi–infinite systems, J. Phys. A 10 (1977) 1927.
T.W. Burkhardt and J.L. Cardy, Surface critical behaviour and local operators with boundary-induced critical profiles, J. Phys. A 20 (1987) L233.
G. Flöter and S. Dietrich, Universal amplitudes and profiles for critical adsorption, Z. Phys. B 97 (1995) 213.
B.M. Law, Wetting, adsorption and surface critical phenomena, Prog. Surf. Sci. 66 (2001) 159.
E. Eisenriegler, Universal amplitude ratios for the surface tension of polymer solutions, J. Chem. Phys. 81 (1984) 4666.
E. Brézin, J.C.L. Guillou and J. Zinn-Justin, Field theoretical approach to critical phenomena, in Phase Transitions and Critical Phenomena, C. Domb and M.S. Green, eds., vol. 6, pp. 125–247, Academic Press, London, U.K. (1976).
D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena, 2nd ed., World Scientific, Singapore (1984).
J. Cardy, Scaling and Renormalization in Statistical Physics, first edition, Cambridge Lecture Notes in Physics, Cambridge University Press, Cambridge, U.K. (1996).
D.M. McAvity, Integral transforms for conformal field theories with a boundary, J. Phys. A 28 (1995) 6915 [hep-th/9507028] [INSPIRE].
J. Rudnick and D. Jasnow, Order-parameter profile in semi-infinite systems at criticality, Phys. Rev. Lett. 48 (1982) 1059.
D. Jasnow, Critical phenomena at interfaces, Rept. Prog. Phys. 47 (1984) 1059.
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, New York, U.S.A. (1972).
I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, U.S.A. (2000).
A.P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, Integrals and Series. Special Functions, vol. 2, Gordon and Breach, New York, U.S.A. (1986).
J. Rudnick and D. Jasnow, Critical wall perturbations: Scaling and renormalization group, Phys. Rev. Lett. 49 (1982) 1595.
R. Klimpel and S. Dietrich, Structure factor of thin films near continuous phase transitions, Phys. Rev. B 60 (1999) 16977.
G. Gompper, Theorie der kritischen Röntgen- und Neutronenstreuung an Oberflächen, Ph.D. Thesis (1986).
E. Eisenriegler, M. Krech and S. Dietrich, Absence of hyperuniversality in critical films, Phys. Rev. Lett. 70 (1993) 619.
M. Krech, E. Eisenriegler and S. Dietrich, Energy density profiles in critical films, Phys. Rev. E 52 (1995) 1345.
E. Eisenriegler, M. Krech and S. Dietrich, Short-distance behavior of the energy density near surfaces of critical systems, Phys. Rev. B 53 (1996) 14377.
I.M. Gel’fand, M.I. Graev and N. Ya. Vilenkin, Generalized Functions, Volume 5: Integral Geometry and Representation Theory, AMS Chelsea Publishing, New York, U.S.A. (1966).
D. Ludwig, The Radon transform on Euclidean space, Commun. Pure Appl. Math. 19 (1966) 49.
S.R. Deans, The Radon transform and some of its applications, Wiley, New York, U.S.A. (1983).
S. Helgason, The Radon transform, Birkhäuser, Boston, U.S.A. (1999).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1912.03021
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Shpot, M.A. Boundary conformal field theory at the extraordinary transition: The layer susceptibility to O(ε). J. High Energ. Phys. 2021, 55 (2021). https://doi.org/10.1007/JHEP01(2021)055
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)055