Skip to main content

Pseudoscalar glueballs in the Klebanov-Strassler theory

A preprint version of the article is available at arXiv.

Abstract

In this paper we describe a pseudoscalar subsector of the Klebanov-Strassler model. This subsector completes the holographic reconstruction of the spectrum of the lowest-lying glueball states, which are singlet under the global symmetry group SU(2) × SU(2). We derive the linearized supergravity equations for the pseudoscalar fluctuations and analyze their spectrum. The system of equations is shown to be compatible with six eigenmodes, as expected from supersymmetry. Our numerical analysis allows to reliably extract four of the corresponding towers. Their values match well the eigenvalues of the 0++ scalar states known from an earlier work. Assuming the masses of 0++ as a reference, we compare the lightest states of the holographic spectrum with lattice calculations in the quenched QCD at Nc = 3 and Nc = .

References

  1. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    ADS  MATH  Google Scholar 

  2. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    ADS  MATH  Google Scholar 

  3. S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(N + M) gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. M.J. Strassler, The duality cascade, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, pp. 419–510, 5, 2005, DOI [hep-th/0505153] [INSPIRE].

  7. S.S. Gubser, C.P. Herzog and I.R. Klebanov, Symmetry breaking and axionic strings in the warped deformed conifold, JHEP 09 (2004) 036 [hep-th/0405282] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. S.S. Gubser, C.P. Herzog and I.R. Klebanov, Variations on the warped deformed conifold, Comptes Rendus Physique 5 (2004) 1031 [hep-th/0409186] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. M.K. Benna, A. Dymarsky and I.R. Klebanov, Baryonic Condensates on the Conifold, JHEP 08 (2007) 034 [hep-th/0612136] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. A. Ceresole, G. Dall’Agata and R. D’Auria, K K spectroscopy of type IIB supergravity on AdS5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].

  12. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73 (2006) 014516 [hep-lat/0510074] [INSPIRE].

  13. M.J. Teper, Glueball masses and other physical properties of SU(N ) gauge theories in D = (3+1): A review of lattice results for theorists, hep-th/9812187 [INSPIRE].

  14. B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N) gauge theories: Calculations with improved operators, JHEP 06 (2004) 012 [hep-lat/0404008] [INSPIRE].

  15. B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large N limit, JHEP 08 (2010) 119 [arXiv:1007.3879] [INSPIRE].

    ADS  MATH  Google Scholar 

  16. J. Holligan et al., Sp(2N) Yang-Mills towards large N, PoS LATTICE2019 (2019) 177 [arXiv:1912.09788] [INSPIRE].

  17. E. Bennett et al., Color dependence of tensor and scalar glueball masses in Yang-Mills theories, Phys. Rev. D 102 (2020) 011501 [arXiv:2004.11063] [INSPIRE].

    ADS  Google Scholar 

  18. A. Athenodorou and M. Teper, The glueball spectrum of SU(3) gauge theory in 3 + 1 dimensions, JHEP 11 (2020) 172 [arXiv:2007.06422] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. E. Gregory et al., Towards the glueball spectrum from unquenched lattice QCD, JHEP 10 (2012) 170 [arXiv:1208.1858] [INSPIRE].

    ADS  Google Scholar 

  20. M. Berg, M. Haack and W. Mueck, Bulk dynamics in confining gauge theories, Nucl. Phys. B 736 (2006) 82 [hep-th/0507285] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. A. Dymarsky and D.G. Melnikov, On the glueball spectrum in the Klebanov-Strassler model, JETP Lett. 84 (2006) 368 [INSPIRE].

    ADS  Google Scholar 

  22. M. Berg, M. Haack and W. Mueck, Glueballs vs. Gluinoballs: Fluctuation Spectra in Non-AdS/Non-CFT, Nucl. Phys. B 789 (2008) 1 [hep-th/0612224] [INSPIRE].

  23. A. Dymarsky and D. Melnikov, Gravity Multiplet on KS and BB Backgrounds, JHEP 05 (2008) 035 [arXiv:0710.4517] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. I. Gordeli and D. Melnikov, Calculation of glueball spectra in supersymmetric theories via holography, in International Workshop on Low X Physics, 11, 2013 [arXiv:1311.6537] [INSPIRE].

  25. M. Krasnitz, A two point function in a cascading N = 1 gauge theory from supergravity, hep-th/0011179 [INSPIRE].

  26. E. Caceres and R. Hernandez, Glueball masses for the deformed conifold theory, Phys. Lett. B 504 (2001) 64 [hep-th/0011204] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. M. Bianchi, M. Prisco and W. Mueck, New results on holographic three point functions, JHEP 11 (2003) 052 [hep-th/0310129] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. X. Amador and E. Caceres, Spin two glueball mass and glueball Regge trajectory from supergravity, JHEP 11 (2004) 022 [hep-th/0402061] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. E. Caceres and C. Núñez, Glueballs of super Yang-Mills from wrapped branes, JHEP 09 (2005) 027 [hep-th/0506051] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. D. Elander, Glueball Spectra of SQCD-like Theories, JHEP 03 (2010) 114 [arXiv:0912.1600] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. M. Bianchi and W. de Paula, On Exact Symmetries and Massless Vectors in Holographic Flows and other Flux Vacua, JHEP 04 (2010) 113 [arXiv:1003.2536] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. S.S. Pufu, I.R. Klebanov, T. Klose and J. Lin, Green’s Functions and Non-Singlet Glueballs on Deformed Conifolds, J. Phys. A 44 (2011) 055404 [arXiv:1009.2763] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. D. Elander, Light scalar from deformations of the Klebanov-Strassler background, Phys. Rev. D 91 (2015) 126012 [arXiv:1401.3412] [INSPIRE].

    ADS  Google Scholar 

  34. D. Elander and M. Piai, Calculable mass hierarchies and a light dilaton from gravity duals, Phys. Lett. B 772 (2017) 110 [arXiv:1703.09205] [INSPIRE].

    ADS  Google Scholar 

  35. D. Elander and M. Piai, Glueballs on the Baryonic Branch of Klebanov-Strassler: dimensional deconstruction and a light scalar particle, JHEP 06 (2017) 003 [arXiv:1703.10158] [INSPIRE].

    ADS  MATH  Google Scholar 

  36. I. Gordeli and D. Melnikov, On I-even Singlet Glueballs in the Klebanov-Strassler Theory, JHEP 08 (2011) 082 [arXiv:0912.5517] [INSPIRE].

    ADS  MATH  Google Scholar 

  37. M.K. Benna, A. Dymarsky, I.R. Klebanov and A. Solovyov, On Normal Modes of a Warped Throat, JHEP 06 (2008) 070 [arXiv:0712.4404] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. A. Dymarsky, D. Melnikov and A. Solovyov, I-odd sector of the Klebanov-Strassler theory, JHEP 05 (2009) 105 [arXiv:0810.5666] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. A. Dymarsky, D. Melnikov and C. Rodrigues Filho. to appear.

  40. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  41. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  43. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  44. H. Nastase, Introduction to the ADS/CFT Correspondence, Cambridge University Press (2015).

  45. J. Erdmenger, Introduction to Gauge/Gravity Duality, PoS TASI2017 (2018) 001 [arXiv:1807.09872] [INSPIRE].

  46. O. DeWolfe, TASI Lectures on Applications of Gauge/Gravity Duality, PoS TASI2017 (2018) 014 [arXiv:1802.08267] [INSPIRE].

  47. D. Harlow, TASI Lectures on the Emergence of Bulk Physics in AdS/CFT, PoS TASI2017 (2018) 002 [arXiv:1802.01040] [INSPIRE].

  48. J.H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].

    ADS  Google Scholar 

  49. P. Candelas and X.C. de la Ossa, Comments on Conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. R.C. Brower, S.D. Mathur and C.-I. Tan, Glueball spectrum for QCD from AdS supergravity duality, Nucl. Phys. B 587 (2000) 249 [hep-th/0003115] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev. D 65 (2002) 105007 [hep-th/0202056] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. A. Butti, M. Graña, R. Minasian, M. Petrini and A. Zaffaroni, The baryonic branch of Klebanov-Strassler solution: A supersymmetric family of SU(3) structure backgrounds, JHEP 03 (2005) 069 [hep-th/0412187] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. R. Apreda, Nonsupersymmetric regular solutions from wrapped and fractional branes, hep-th/0301118 [INSPIRE].

  55. H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. D. Elander and M. Piai, Light scalars from a compact fifth dimension, JHEP 01 (2011) 026 [arXiv:1010.1964] [INSPIRE].

    ADS  MATH  Google Scholar 

  57. D. Elander and M. Piai, On the glueball spectrum of walking backgrounds from wrapped-D5 gravity duals, Nucl. Phys. B 871 (2013) 164 [arXiv:1212.2600] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. D. Elander, M. Piai and J. Roughley, Holographic glueballs from the circle reduction of Romans supergravity, JHEP 02 (2019) 101 [arXiv:1811.01010] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. L.J. Romans, The F(4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornélio Rodrigues Filho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.11952

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melnikov, D., Filho, C.R. Pseudoscalar glueballs in the Klebanov-Strassler theory. J. High Energ. Phys. 2021, 24 (2021). https://doi.org/10.1007/JHEP01(2021)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2021)024

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Supergravity Models