Abstract
One of the most striking but mysterious properties of the sinh-Gordon model (ShG) is the b → 1/b self-duality of its S-matrix, of which there is no trace in its Lagrangian formulation. Here b is the coupling appearing in the model’s eponymous hyperbolic cosine present in its Lagrangian, cosh(bϕ). In this paper we develop truncated spectrum methods (TSMs) for studying the sinh-Gordon model at a finite volume as we vary the coupling constant. We obtain the expected results for b ≪ 1 and intermediate values of b, but as the self-dual point b = 1 is approached, the basic application of the TSM to the ShG breaks down. We find that the TSM gives results with a strong cutoff Ec dependence, which disappears according only to a very slow power law in Ec. Standard renormalization group strategies — whether they be numerical or analytic — also fail to improve upon matters here. We thus explore three strategies to address the basic limitations of the TSM in the vicinity of b = 1. In the first, we focus on the small-volume spectrum. We attempt to understand how much of the physics of the ShG is encoded in the zero mode part of its Hamiltonian, in essence how ‘quantum mechanical’ vs ‘quantum field theoretic’ the problem is. In the second, we identify the divergencies present in perturbation theory and perform their resummation using a supra-Borel approximate. In the third approach, we use the exact form factors of the model to treat the ShG at one value of b as a perturbation of a ShG at a different coupling. In the light of this work, we argue that the strong coupling phase b > 1 of the Lagrangian formulation of model may be different from what is naïvely inferred from its S-matrix. In particular, we present an argument that the theory is massless for b > 1.
Article PDF
References
A.E. Arinshtein, V.A. Fateev and A.B. Zamolodchikov, Quantum s Matrix of the (1+1)-Dimensional Todd Chain, Phys. Lett. B 87 (1979) 389 [INSPIRE].
A. Fring, G. Mussardo and P. Simonetti, Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory, Nucl. Phys. B 393 (1993) 413 [hep-th/9211053] [INSPIRE].
A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett. B 311 (1993) 193 [hep-th/9306044] [INSPIRE].
V. Fateev, S.L. Lukyanov, A.B. Zamolodchikov and A.B. Zamolodchikov, Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories, Nucl. Phys. B 516 (1998) 652 [hep-th/9709034] [INSPIRE].
A.B. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions, Int. J. Mod. Phys. A 10 (1995) 1125 [INSPIRE].
A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equation in sinh-Gordon model, J. Phys. A 39 (2006) 12863 [hep-th/0005181] [INSPIRE].
J. Teschner, On the spectrum of the sinh-Gordon model in finite volume, Nucl. Phys. B 799 (2008) 403 [hep-th/0702214] [INSPIRE].
A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].
S.L. Lukyanov, Finite temperature expectation values of local fields in the sinh-Gordon model, Nucl. Phys. B 612 (2001) 391 [hep-th/0005027] [INSPIRE].
S. Negro and F. Smirnov, On one-point functions for sinh-Gordon model at finite temperature, Nucl. Phys. B 875 (2013) 166 [arXiv:1306.1476] [INSPIRE].
A.B. Zamolodchikov, Resonance factorized scattering and roaming trajectories, J. Phys. A 39 (2006) 12847 [INSPIRE].
C. Ahn, G. Delfino and G. Mussardo, Mapping between the sinh-Gordon and Ising models, Phys. Lett. B 317 (1993) 573 [hep-th/9306103] [INSPIRE].
A.L. Larsen and N.G. Sanchez, Sinh-Gordon, cosh-Gordon and Liouville equations for strings and multistrings in constant curvature space-times, Phys. Rev. D 54 (1996) 2801 [hep-th/9603049] [INSPIRE].
M. Kormos, G. Mussardo and A. Trombettoni, 1D Lieb-Liniger Bose Gas as Non-Relativistic Limit of the Sinh-Gordon Model, Phys. Rev. A 81 (2010) 043606 [arXiv:0912.3502] [INSPIRE].
A. Bastianello and L. Piroli, From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics, J. Stat. Mech. 1811 (2018) 113104 [arXiv:1807.06869] [INSPIRE].
A. De Luca and G. Mussardo, Equilibration Properties of Classical Integrable Field Theories, J. Stat. Mech. 1606 (2016) 064011 [arXiv:1603.08628] [INSPIRE].
G.D.V. Del Vecchio, A. Bastianello, A. De Luca and G. Mussardo, Exact out-of-equilibrium steady states in the semiclassical limit of the interacting Bose gas, SciPost Phys. 9 (2020) 002 [arXiv:2002.01423] [INSPIRE].
A.G. Bytsko and J. Teschner, Quantization of models with non-compact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model, J. Phys. A 39 (2006) 12927 [hep-th/0602093] [INSPIRE].
G. Mussardo, Statistical Field Theory, Oxford Graduate Texts, Oxford University Press (2020).
V.P. Yurov and A.B. Zamolodchikov, Truncated conformal space approach to the scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].
V. Yurov and A. Zamolodchikov, Truncated fermionic space approach to the critical 2d ising model with magnetic field, Int. J. Mod. Phys. A 06 (1991) 4557.
M. Lassig, G. Mussardo and J.L. Cardy, The scaling region of the tricritical Ising model in two-dimensions, Nucl. Phys. B 348 (1991) 591 [INSPIRE].
R.M. Konik and Y. Adamov, A Numerical Renormalization Group for Continuum One-Dimensional Systems, Phys. Rev. Lett. 98 (2007) 147205 [cond-mat/0701605] [INSPIRE].
A.J.A. James, R.M. Konik, P. Lecheminant, N.J. Robinson and A.M. Tsvelik, Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-abelian bosonization to truncated spectrum methods, Rept. Prog. Phys. 81 (2018) 046002 [arXiv:1703.08421] [INSPIRE].
A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech. 1412 (2014) P12010 [arXiv:1409.1494] [INSPIRE].
Z. Bajnok and M. Lájer, Truncated Hilbert space approach to the 2d ϕ4 theory, JHEP 10 (2016) 050 [arXiv:1512.06901] [INSPIRE].
S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4 theory in two dimensions, Phys. Rev. D 91 (2015) 085011 [arXiv:1412.3460] [INSPIRE].
S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the ϕ4 theory in two dimensions. II. The ℤ2 -broken phase and the Chang duality, Phys. Rev. D 93 (2016) 065014 [arXiv:1512.00493] [INSPIRE].
J. Elias-Miró, S. Rychkov and L.G. Vitale, NLO Renormalization in the Hamiltonian Truncation, Phys. Rev. D 96 (2017) 065024 [arXiv:1706.09929] [INSPIRE].
J. Elias-Miró, S. Rychkov and L.G. Vitale, High-Precision Calculations in Strongly Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian Truncation, JHEP 10 (2017) 213 [arXiv:1706.06121] [INSPIRE].
M. Lassig and M.J. Martins, Finite size effects in theories with factorizable S matrices, Nucl. Phys. B 354 (1991) 666 [INSPIRE].
R.M. Konik, Exciton Hierarchies in Gapped Carbon Nanotubes, Phys. Rev. Lett. 106 (2011) 136805.
R.M. Konik, M.Y. Sfeir and J.A. Misewich, Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis, Phys. Rev. B 91 (2015) 075417 [arXiv:1403.2472] [INSPIRE].
M. Beria, G.P. Brandino, L. Lepori, R.M. Konik and G. Sierra, Truncated Conformal Space Approach for Perturbed Wess-Zumino-Witten SU(2)k Models, Nucl. Phys. B 877 (2013) 457 [arXiv:1301.0084] [INSPIRE].
R.M. Konik, T. Pálmai, G. Takács and A.M. Tsvelik, Studying the perturbed Wess-Zumino-Novikov-Witten SU(2)k theory using the truncated conformal spectrum approach, Nucl. Phys. B 899 (2015) 547 [arXiv:1505.03860] [INSPIRE].
P. Azaria, R.M. Konik, P. Lecheminant, T. Palmai, G. Takács and A.M. Tsvelik, Particle Formation and Ordering in Strongly Correlated Fermionic Systems: Solving a Model of Quantum Chromodynamics, Phys. Rev. D 94 (2016) 045003 [arXiv:1601.02979] [INSPIRE].
G. Feverati, K. Graham, P.A. Pearce, G.Z. Toth and G. Watts, A renormalisation group for tcsa, (2006).
P. Giokas and G. Watts, The renormalisation group for the truncated conformal space approach on the cylinder, (2011).
M. Lencsés and G. Takács, Excited state TBA and renormalized TCSA in the scaling Potts model, JHEP 09 (2014) 052 [arXiv:1405.3157] [INSPIRE].
S.R. Coleman, The Quantum sine-Gordon Equation as the Massive Thirring Model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].
D.J. Amit, Y.Y. Goldschmidt and G. Grinstein, Renormalization Group Analysis of the Phase Transition in the 2D Coulomb Gas, sine-Gordon Theory and xy Model, J. Phys. A 13 (1980) 585 [INSPIRE].
Z. Bajnok, M. Lájer, B. Szépfalvi and I. Vona, Leading exponential finite size corrections for non-diagonal form factors, JHEP 07 (2019) 173 [arXiv:1904.00492] [INSPIRE].
A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979) 253 [INSPIRE].
S.L. Lukyanov and A.B. Zamolodchikov, Exact expectation values of local fields in quantum sine-Gordon model, Nucl. Phys. B 493 (1997) 571 [hep-th/9611238] [INSPIRE].
N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].
M. Lashkevich, Resonances in sinh- and sine-Gordon Models and Higher Equations of Motion in Liouville Theory, J. Phys. A 45 (2012) 455403 [arXiv:1111.2547] [INSPIRE].
A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].
G. Mussardo and P. Simonetti, Stress-energy tensor and ultraviolet behavior in massive integrable quantum field theories, Int. J. Mod. Phys. A 9 (1994) 3307 [hep-th/9308057] [INSPIRE].
P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].
Z. Bajnok and F. Smirnov, Diagonal finite volume matrix elements in the sinh-gordon model, Nucl. Phys. B 945 (2019) 114664.
M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].
M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].
T.R. Klassen and E. Melzer, On the relation between scattering amplitudes and finite size mass corrections in QFT, Nucl. Phys. B 362 (1991) 329 [INSPIRE].
M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D 91 (2015) 025005 [arXiv:1409.1581] [INSPIRE].
A. Stathopoulos and J.R. McCombs, PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description, ACM Trans. Math. Software 37 (2010) 1.
L. Wu, E. Romero and A. Stathopoulos, Primme_svds: A high-performance preconditioned SVD solver for accurate large-scale computations, SIAM J. Sci. Comput. 39 (2017) S248.
A. Bytsko and J. Teschner, The integrable structure of nonrational conformal field theory, Adv. Theor. Math. Phys. 17 (2013) 701 [arXiv:0902.4825] [INSPIRE].
V.A. Fateev and S.L. Lukyanov, Boundary RG flow associated with the AKNS soliton hierarchy, J. Phys. A 39 (2006) 12889 [hep-th/0510271] [INSPIRE].
C.-r. Ahn, C.-j. Kim and C. Rim, Hidden relation between reflection amplitudes and thermodynamic Bethe ansatz, Nucl. Phys. B 556 (1999) 505 [hep-th/9903134] [INSPIRE].
G. Hardy, Divergent Series, Clarendon Press (1949).
V. Grecchi and M. Maioli, Borel summability beyond the factorial growth, Annales de l’I.H.P. Physique théorique 41 (1984) 37.
J. Écalle, Les Fonctions Resurgentes, Vol. I–III, Publ. Math. Orsay (1981).
O. Costin, Asymptotics and Borel Summability, Chapman & Hall/CRC (2008).
G. Basar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons, and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].
M. Ünsal and G.V. Dunne, What is QFT? resurgent trans-series, lefschetz thimbles, and new exact saddles, PoS LATTICE 2015 (2016) 251.
T.R. Klassen and E. Melzer, Spectral flow between conformal field theories in (1+1)-dimensions, Nucl. Phys. B 370 (1992) 511 [INSPIRE].
P. Dorey, A. Pocklington, R. Tateo and G. Watts, TBA and TCSA with boundaries and excited states, Nucl. Phys. B 525 (1998) 641 [hep-th/9712197] [INSPIRE].
A.A. Andrianov, D. Espriu, P. Giacconi and R. Soldati, Anomalous positron excess from Lorentz-violating QED, JHEP 09 (2009) 057 [arXiv:0907.3709] [INSPIRE].
Z. Bajnok, J. Balog, M. Lájer and C. Wu, Field theoretical derivation of Lüscher’s formula and calculation of finite volume form factors, JHEP 07 (2018) 174 [arXiv:1802.04021] [INSPIRE].
B. Pozsgay, I.M. Szécsényi and G. Takács, Exact finite volume expectation values of local operators in excited states, JHEP 04 (2015) 023 [arXiv:1412.8436] [INSPIRE].
B. Pozsgay and G. Takács, Form-factors in finite volume I: Form-factor bootstrap and truncated conformal space, Nucl. Phys. B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].
B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys. B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE].
Z. Bajnok and C. Wu, Diagonal form factors from non-diagonal ones, in 2017 MATRIX Annals, J. de Gier, C.E. Praeger and T. Tao, eds., (Cham), pp. 141–151, Springer International Publishing (2019), DOI.
G. Delfino, G. Mussardo and P. Simonetti, Nonintegrable quantum field theories as perturbations of certain integrable models, Nucl. Phys. B 473 (1996) 469 [hep-th/9603011] [INSPIRE].
C.-r. Ahn, V.A. Fateev, C.-j. Kim, C. Rim and B. Yang, Reflection amplitudes of ADE Toda theories and thermodynamic Bethe ansatz, Nucl. Phys. B 565 (2000) 611 [hep-th/9907072] [INSPIRE].
E.K. Sklyanin, Exact Quantization of the Sinh-gordon Model, Nucl. Phys. B 326 (1989) 719 [INSPIRE].
S.L. Lukyanov, Form-factors of exponential fields in the sine-Gordon model, Mod. Phys. Lett. A 12 (1997) 2543 [hep-th/9703190] [INSPIRE].
M. Lashkevich and Y. Pugai, Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities, Nucl. Phys. B 877 (2013) 538 [arXiv:1307.0243] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2007.00154
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Konik, R., Lájer, M. & Mussardo, G. Approaching the self-dual point of the sinh-Gordon model. J. High Energ. Phys. 2021, 14 (2021). https://doi.org/10.1007/JHEP01(2021)014
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)014