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Abstract: One of the most striking but mysterious properties of the sinh-Gordon model
(ShG) is the b→ 1/b self-duality of its S-matrix, of which there is no trace in its Lagrangian
formulation. Here b is the coupling appearing in the model’s eponymous hyperbolic co-
sine present in its Lagrangian, cosh(bφ). In this paper we develop truncated spectrum
methods (TSMs) for studying the sinh-Gordon model at a finite volume as we vary the
coupling constant. We obtain the expected results for b � 1 and intermediate values of
b, but as the self-dual point b = 1 is approached, the basic application of the TSM to the
ShG breaks down. We find that the TSM gives results with a strong cutoff Ec dependence,
which disappears according only to a very slow power law in Ec. Standard renormalization
group strategies — whether they be numerical or analytic — also fail to improve upon
matters here. We thus explore three strategies to address the basic limitations of the TSM
in the vicinity of b = 1. In the first, we focus on the small-volume spectrum. We attempt
to understand how much of the physics of the ShG is encoded in the zero mode part of
its Hamiltonian, in essence how ‘quantum mechanical’ vs ‘quantum field theoretic’ the
problem is. In the second, we identify the divergencies present in perturbation theory and
perform their resummation using a supra-Borel approximate. In the third approach, we
use the exact form factors of the model to treat the ShG at one value of b as a perturba-
tion of a ShG at a different coupling. In the light of this work, we argue that the strong
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coupling phase b > 1 of the Lagrangian formulation of model may be different from what is
naïvely inferred from its S-matrix. In particular, we present an argument that the theory
is massless for b > 1.
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1 Introduction

The sinh-Gordon model (ShG) is a canonical quantum integrable field theory. It has a
number of different descriptions, but in this work we are going to take as a starting point
the Lagrangian formulation of the model given by

LShG = 1
16π (∂µφ)2 − 2µ cosh(bφ) . (1.1)
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Here φ(x, t) is a real non-compact scalar field, µ is some dimensionful mass scale and b

is a dimensionless coupling constant. Upon quantization, µ is replaced by a renormalized
coupling constant depending on the chosen quantization scheme. The spectrum of the
model is exceedingly simple, consisting of a single massive particle of mass MShG. This
makes the ShG the simplest of interacting integrable field theories. Much is known about
its properties. Its elastic S-matrix was found in [1]. The form factors of local operators
were obtained in [2, 3], while the vacuum expectation values of exponential operators were
found in [4]. The exact relationship between the physical mass MShG and the renormalized
coupling in the perturbed gaussian CFT scheme, here denoted later as µShG, as a function
of the coupling b, was derived in [5]. Its thermodynamic Bethe ansatz for the ground state
and for the excited states was studied in [6, 7], while the thermal correlation functions of
the model were discussed in [8–10]. A suggestive connection between the ShG model and
roaming renormalization group trajectories among the minimal models of CFT was studied
in [11], while a direct mapping between the ShG and the Ising model was established in [12].
Furthermore, beyond simply being a model that is amenable to analytic manipulation, the
ShG finds applications in a wide range of areas of physics running from toy models of
quantum gravity [13], to cold atomic gases [14, 15], studies of thermalization in classical
field theories [16, 17], and lattice models with non-compact quantum group symmetries [18].
It is also worth stressing that the ShG model is the simplest example of Toda field theories,
a large class of models with exponential interactions based on root systems of Lie algebras,
see for instance [19] and references therein. The main difference between the ShG model
and the rest of the Toda field theories is that the ShG does not have bound states.

One of the most striking but mysterious aspects of the ShG model1 is its apparent
weak-strong duality:

b↔ 1/b . (1.2)

In the presence of such a symmetry, the self-dual point b = 1 clearly emerges as a special
value of the ShG model, for it divides the weak-coupling regime, b < 1, from the strong
coupling regime, b > 1. It is important to underline that this duality is not at all manifest in
the Lagrangian of the theory but is apparent, as discussed later, in its S-matrix formulation.
It is the primary aim of this paper to develop truncated spectrum methods (TSMs) in order
to study the model at finite volume by varying its coupling constant in the vicinity of this
self-dual point. For reasons which will become clear later, the obvious regime in which these
methods can be implemented is the weak-coupling regime b < 1, but we can extend them
to approach the b = 1 self-dual point. As we shall see, at b = 1 the physical mass vanishes
and the theory appears to be (at least naively) critical. Ultimately we aim to explore the
ShG at b = 1 and understand what theory is described by the Lagrangian given in eq. (1.1).
The theory’s duality, as expressed in eq. (1.2), is built on results established at b < 1 which
are then subsequently analytically continued to regimes beyond their nominal validity. It is
then an important question to understand whether the Lagrangian corresponding to these
analytic continuations is the same as given in eq. (1.1) with b > 1.

1The Toda field theories have a similar duality.
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As we explore in this paper, the development of TSM for the ShG nearby the self-dual
point b = 1 proves to be surprisingly challenging. Truncated spectrum methods treat a
model by firstly defining it on a finite volume (typically an infinitely long cylinder of width
R) and then, secondly, introducing a hard UV cutoff, Ec, in the number of energy levels
which are included in the computation [20–30]. Under these two conditions, numerics can
be performed (either exact diagonalization or Lánczos based approaches) and the low lying
energy spectrum, together with vacuum expectation values and matrix elements of several
operators, can be computed. Of course, in this treatment it is crucial to understand the
effect of Ec on the computed results. For certain models, even small values of Ec lead to
results that are, in effect, independent of the cutoff (i.e. the c = 1/2 Ising model perturbed
by the presence of a magnetic field being a classic example [21]). In other cases, as for
instance those analysed in refs. [22, 31–36], the results are instead noticeably affected by Ec
and, to ameliorate the effects of the introduction of Ec, various renormalization group (RG)
strategies have been employed, both analytic and numerical [23, 24, 27–30, 37–39].

The premise of all these RG strategies is that cutoff dependent effects are in some sense
small. However, in the case of the ShG model, we shall see that such cutoff effects near
b = 1 can be on the contrary extremely large and therefore the traditional RG strategies
do not work. In order to deal with this new situation, we propose herein three different
approaches to tackle the problem:

1. In the first, we explore more carefully the small-volume regime and its ‘quantum
mechanical nature’. In particular, one may expect that the UV behaviour of the
spectrum is dominated by the quantum mechanics of the zero mode of the field.
By using either this quantum mechanical picture or the TBA equations combined
with the mass-coupling relation, it is possible to derive a systematic expansion for
certain energy levels (more precisely, their corresponding scaling functions) in terms
of (ln(µShGR))−1. The two expansions are however different in subleading orders.
As the energies contain an additional R−1 factor relative to the scaling function, the
difference between TBA and zero mode energy levels eventually diverge for R → 0
for all b > 0. We derive an effective potential, partially taking into account the effect
of oscillators. At the one hand, we analytically reproduce the exact expansion up to
O(b12), confirming that the oscillators are able to explain the differences in the log-
expansion. On the other hand, we show that TSM numerics significantly outperforms
even the numerical solution of the complete effective potential. We then use this fact
to provide a more precise measurement of the IR parameters from TSM, combining
UV numerics with the small-volume expansion of TBA.

2. In the second strategy, we recast the analytic RG strategy used to remove the effect
of the cutoff. Typically this RG strategy is pursued by initially performing low order
perturbation theory in the conformal coupling, here µShG. However this fails for
the ShG near b = 1 as the perturbation theory of this model is divergent term by
term. These divergences, we show, actually appear for any value of b, although for
small values of b their appearance is delayed until higher orders. Facing this, we
argue that the diverging perturbative series can be resummed. However, this is not
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a Borel resummation per se, as the series is diverging more rapidly than n!, but it
does nonetheless admit a supra-Borel resummation.

3. In the third and last strategy, we abandon the use of the non-compact boson Hilbert
space as a computational basis. One way to understand the difficulties in using TSM’s
about b = 1 is to think of them as arising due to a poor choice of computational basis.
We have already said that the theory becomes critical at b = 1 (i.e. the mass scale
MShG vanishes at fixed µShG). Hence, using a non-interacting field to describe the
vicinity of what it could be a non-trivial conformal field theory (presumably strongly
interacting) may then simply be inappropriate. Thus we explore the possibility of
using an interacting basis of states as a computational basis. The natural choice here
is to use, as a computational basis, the basis of exact eigenstates of the ShG at one
value of b to study the theory at a different (relatively close) value of b.

The paper is organized as follows. In section 2, we review basic information on the
ShG model, pointing out its origin and possible limitations. Although this section reviews
previously known results, it is crucial for understanding the rest of the paper. In section 3
we discuss truncated spectrum methods, in particular the key role played by the choice of
computational basis. In section 4 we then present our particular choice of computational
basis. In section 5, we discuss our numerical results for various quantities including the
finite volume spectrum, the S-matrix, and the vacuum expectation values of various ex-
ponential operators of the model. In section 5 we further demonstrate how the standard
renormalization group techniques used to improve TSM results fail to do so for the ShG
model close to the self-dual point, thus setting up the rationale for the next three sections.
In section 6 we explore in detail the information carried by the zero modes of the theory
and the ‘quantum-mechanical’ nature of the ShG model in certain regimes of the coupling
and volume. In section 7 we analyse the nature of perturbation theory which defines the
ShG model as a massive deformation of a Gaussian theory and we argue that the pertur-
bative series is badly behaved and is non-Borel resummable. This leads us to consider a
supra-Borel resummation in order to give meaning to these divergent sums. In section 8
we come back to the issue of a proper choice of the basis for the TSM and we explore the
possibility to study the ShG model at a given coupling b in terms of states and matrix
elements of a ShG model defined at a different value of b. As we will see, this approach
admits of a series of sanity checks. In section 9 we finally discuss our conclusions and
future directions.

2 Basic features of the sinh-Gordon model

In this section we briefly review the basic properties of the ShG necessary to understand
the TSM results and their interpretation presented in the main body of the paper. The
scale dimension of the renormalized counterpart of the coupling µ appearing in the ShG
Lagrangian depends on the quantization scheme of the model. Hereafter we are going to
discuss three such schemes: (i) a perturbative scheme based on Feynman diagrams; (ii)
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Figure 1. Diagrams for the first order tadpole diagram T and the corresponding relative mass
counterterm δm2 = −T (m0).

treating the theory on the same grounds as its analytically continued cousin, the sine-
Gordon model, namely as a perturbed Gaussian CFT; and (iii) as a perturbation of a
Liouville quantum field theory. The model’s self-duality is often encoded in the parameter

Q = b+ b−1, (2.1)

which we record here for the reader to emphasize its importance.

2.1 Feynman diagrammatic analysis

In the first scheme, the ShG model is considered by employing perturbation theory in the
coupling constant b and evaluating all quantities in terms of Feynman diagrams. This can
be done by introducing a momentum cutoff Λ and expanding the potential of the theory
in terms of b:

2µ cosh(bφ) = 2µ(µ̄,Λ, b)
(

1 + b2

2 φ
2 + b4

4!φ
4 + · · ·+ b2n

(2n)!φ
2n + · · ·

)
. (2.2)

Here µ(µ̄,Λ, b) is a bare parameter of dimension mass squared. Using the cutoff Λ, we have
introduced a renormalized coupling µ̄, which we aim to keep fixed as we tune µ such that
the physical quantities are finite:

µ(µ̄,Λ, b) = µ̄+O(b2 log(Λ)) (2.3)

Above the unique ground state of the theory, there is a massive excitation, whose mass at
the lowest order in b is m0 given by

m2
0 = 16π b2 µ̄ . (2.4)

Of course the actual mass of the particle will get corrections by all the higher order interac-
tions. However, the perturbative series contains divergences. Fortunately, in 1+1d theories
with local interactions all divergences come from the tadpole diagrams. These divergences
can be cured by introducing a mass counter-term δm2 and imposing that, order by order,
δm2 cancels the infinities coming from the tadpole diagrams. At the lowest order in b2, for
instance, we have the condition expressed in figure 1, where the tadpole is regularized in
terms of the momentum cutoff Λ as

T (m0) = (8π)2b4µ̄

Λ∫
−Λ

dk1
2π

∞∫
−∞

dk0
(2π)

1
k2 +m2

0
= (8π)2b4µ̄

1
2π log

(
Λ
m0

+
√

1 + Λ2

m2
0

)
. (2.5)
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Figure 2. Feynman diagrams up to order b6 entering the expansion of M2
ShG. The φ6 vertex is

distinguished by a blue dot.

The counterterm δm2 = −T (mIR), involving in general an arbitrary mass scale mIR, is
absorbed by the bare parameter µ such that

µ(µ̄,Λ, b) = µ̄+ δm2

16πb2 +O(b4 log2 Λ). (2.6)

This prescription is equivalent to defining a normal ordering for the Lagrangian (eq. (1.1)).
The quantization scheme is fixed by the choice of mIR. In particular, setting mIR = m0
leads to the usual scheme of a perturbed massive boson, where normal ordering is with
respect to the free mass m0, eliminating altogether the tadpole diagrams at each order.
The exact relation between µ and µ̄ in the normal ordering scheme mIR is easily obtained
by means of the Baker-Campbell-Hausdorff formula. It reads

µ(µ̄,Λ, b) = µ̄

(
Λ
mIR

+
√

1 + Λ2

m2
IR

)−2b2

. (2.7)

In this way, all n-point correlation functions of the theory are finite to all orders in pertur-
bation theory. In particular, one can compute the physical mass MShG of the theory, as a
function of m0 and b2, by looking at the pole of the 2-point correlation function. In the
scheme mIR = m0 ≡ m, we obtain

M2
ShG = m2

(
1− b4

384g2 + b6

g3

( 1
1536π + 7 ζ(3)

3072π3 −
14 ζ(3)
3072π3

))
+O

(
b8

g4

)
, (2.8)

where g = 1
8π and each term comes from the Feynman diagrams of figure 2. We will point

out later that this perturbative analysis is consistent with an exact formula for the mass
that we present in section 2.2.4.

We note that at O(b4), the ShG coincides with a φ4 Landau-Ginzburg model. Given
the repulsive nature of this latter theory, the ShG is expected to have no bound states, its
spectrum consisting of multi-particle states of the same particle. As we will see shortly,
this conclusion is in agreement with the exact S-matrix of the model.
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2.2 Relation with the sine-Gordon model

In the second approach, properties of the ShG model are extracted from a closely related
model, the sine-Gordon (SG) model. The SG model has a Lagrangian given by

LSG = 1
16π (∂µφ)2 + 2µ cos(bφ) . (2.9)

This can be obtained from the ShG Lagrangian (1.1) by making the substitutions

b→ ib ,

µ→ −µ .
(2.10)

It is important to stress that, although the two theories are related by this simple transfor-
mation, their underlying nature is rather different and there are indeed a series of hidden
subtleties behind the innocent looking analytic continuation (2.10), some of which are
discussed below.

2.2.1 SG and ShG models as deformations of a Gaussian theory

Both theories may be regarded as deformations of the Gaussian fixed point action given
by the kinetic term in eq. (1.1)

A0 =
∫ 1

16π (∂µφ)2 d2x . (2.11)

With respect to this CFT of central charge c = 1, the chiral conformal dimension of a vertex
operator, V (a) = eiaφ, is ∆(a) = a2. The sine-Gordon model involves the vertex operators
V (±b) = e±i bφ which are compact and bounded, while the sinh-Gordon model employs the
vertex operators V (∓ib) = e±bφ which are instead non-compact and unbounded. More-
over, while in the sine-Gordon model the conformal dimensions of the vertex operators are
positive and given by

∆±b = b2 , (2.12)

in the sinh-Gordon model they are instead negative and given by

∆±ib = −b2 . (2.13)

How the sinh-Gordon model turns out to be a unitary quantum field theory, despite the
negative conformal dimension of its basic vertex operators, is one of the remarkable aspects
of this model. The way the theory restores its unitarity is through the existence of non-zero
vacuum expectation values (VEV), whose exact values are provided in eq. (2.33) below.
With x12 = x1 − x2, consider for instance the operator product expansion (OPE) with
respect to the Gaussian fixed point:

cosh(bφ(x1)) cosh(bφ(x2)) = 1
|x12|4b2

cosh(2bφ(x2)) + |x12|4b
2
1 + · · · , (2.14)

and taking the vacuum expectation value of both terms of this equation, we have

〈cosh(bφ(x1)) cosh(bφ(x2))〉 ' 〈cosh(2bφ(0))〉
|x12|4b2

+ |x12|4b
2 + · · · . (2.15)

– 7 –
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Hence, if 〈cosh(2bφ(0))〉 6= 0, we see that the two-point function of the vertex operators
e±bφ has effectively the same leading short-distance singularity as it would have in the case
of a positive ∆ = b2 conformal dimension.

2.2.2 Coleman bound in SG and its formal absence in ShG
From a renormalization group point of view, the vertex operators which give rise to the
sine-Gordon model are relevant operators for b2 ≤ 1, where the upper value b2 = 1 is
known in the literature as Coleman’s bound [40]. The values 0 ≤ b2 ≤ 1 are those for
which the SG is ultraviolet stable (i.e. we do not need extra non-trivial counter-terms in its
Lagrangian to cure its ultraviolet divergencies). As we already know, the only divergences
come from the tadpoles, which can be absorbed by a normal ordering prescription under
which the vertex operators get renormalized multiplicatively. Defining mIR as the mass
scale by which normal ordering is defined and using a−1 as the UV cutoff, the multiplicative
renormalization appears as

e±ibφ =
[(

mIRa

2

)2b2

+O(a2)
]

: e±ibφ :mIR . (2.16)

When b2 > 1, the vertex operators are irrelevant: hence the SG model becomes essentially
a massless theory [41].

In the ShG model, the renormalization of the operators (or the coupling) occurs with
the inverse factor of the SG model

e±ibφ =
[( 2

mIRa

)2b2

+O(a2)
]

: e±ibφ :mIR . (2.17)

Typically in this multiplicative renormalization the power of a that arises is absorbed into
the bare coupling µ so defining a renormalized dimensionful parameter µSG/ShG:

µSG/ShG = µa±2b2 , (2.18)

where + is for the SG theory and − is for the ShG model. µSG/ShG then has engineering
dimension in the two theories of 2∓ 2b2. The scale mIR that appears in this multiplicative
renormalization is then typically absorbed into the definition of the normal ordered vertex
operator so that the OPE has the conventions expressed in eq. (2.14). Henceforth it is
understood as part of the definition of µSG/ShG that mIR is chosen this way. The relation
between the free mass m appearing in eq. (2.8) and the coupling µShG is [42]

µShG = m2+2b2

24+2b2πb2
e2b2γE , (2.19)

as derived in appendix A.
Because of the negative conformal dimension of its vertex operators (which makes

them relevant operators), at least formally the ShG model does not have a Coleman bound.
However, according to the argument given above, the singularity structure of the OPE for
the ShG interaction (eq. (2.15)) is the same as for the SG model. One thus may suspect
that there is in fact a Coleman bound for the ShG model, namely that the theory is properly
defined only for b2 < 1, has a singularity at b2 = 1 and a massless phase for b2 > 1. This
is the scenario we will actually present later in the paper.
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2.2.3 The spectrum of SG model

Let us now turn our attention to the spectrum of the SG model. This quantity is key as
the spectrum and S-matrix of the SG model will be connected to that of the ShG model
by analytic continuation. Reproducing this spectrum will be one of the major targets of
our TSM studies.

We note that this analytic continuation is subtle. While the sinh-Gordon model has
only one vacuum state, the sine-Gordon model has instead an infinite number of vacuum
states, |n〉, which are associated to the minima of the potential, φn = 2πn/b. These
multiple vacua give rise to solitons and anti-solitons, excitation which interpolate between
two neighboring vacua, |n〉 and |n ± 1〉. For the integrability of the theory, scattering
among solitons and anti-solitons is elastic and the relative amplitudes can be computed
exactly [43]. Here it is sufficient to remind the reader of the main results of this analysis.
It is convenient to define

ξ = b2

1− b2 , (2.20)

as this parameter controls the spectrum of the SG theory. The number of neutral soliton-
anti-soliton bound states (breathers) is given by

N =
[1
ξ

]
, (2.21)

where [x] denotes the integer part of x. Denoting by Ms the mass of the soliton, the
breather masses are given by

mn = 2Ms sin
(
n
πξ

2

)
, n = 1, 2, . . . < 1

ξ
. (2.22)

Hence, the first breather exists provided ξ ≤ 1, namely only in the range b2 ≤ 1/2. Ignoring
this restriction, we plot m1(b) vs b for the entire interval (0, 1) (see figure 3.b). Notice that
even though the breather does not exist for b2 > 1/2, its mass remains positive until
b2 = 2/3. After this, its value turns negative and begins to rapidly oscillate, reflecting its
possession of an essential singularity at b2 = 1.

The mass scale Ms can be related to the renormalized coupling of the theory µSG (as
defined in eq. (2.18)). In the SG model the ground state energy in finite volume and in
the presence of an external field coupled to the topological charge of the model can be
computed in two different ways: using the thermodynamic Bethe ansatz (TBA) and using
conformal perturbation theory. The former approach employs the physical mass Ms while
the latter, the renormalized mass scale µSG. Comparing the results coming from the two
different approaches, Al. Zamolodchikov [5] was able to obtain an exact formula encoding
the µSG −Ms relation:

Ms =
2Γ
(
ξ
2

)
√
πΓ
(

1
2 + ξ

2

) (µSG
πΓ(1− b2)

Γ(b2)

) 1
2−2b2

. (2.23)

We see that this formula is consistent with µSG in the SG model having engineering and
scaling dimension 2 − 2b2. It is also important to stress that this formula assumes the
vertex operators are normalized with the convention of eq. (2.14).

– 9 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

b

M
s
/μ

S
G

2
-

2
b

2

(a) Mass of the sine-Gordon soliton as a func-
tion of b.

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

b

m
1
/M

s

(b) Mass of first SG breather vs b. The non-
physical region is highlighted in red.

Figure 3. Masses in the sine-Gordon model.

This formula is physical in the interval 0 ≤ b2 ≤ 1. It has an essential singularity when
b2 → 1 (i.e. ξ →∞)

Ms ' 2
√

2e
1
2−γEµ

ξ+1
2

SG (πξ)
ξ
2 e

1
4ξ , b2 → 1. (2.24)

It also diverges when b2 → 0 as

Ms ' 4
√
µSG
π

1
b
, b2 → 0. (2.25)

Its behaviour in the interval 0 ≤ b2 ≤ 1 is shown on figure 3a.

2.2.4 ShG model as analytic continuation of SG model

As we have stated, the ShG model can be thought of as the analytic continuation of the
SG. How then to connect the rich spectrum of SG containing topological excitations and
their bound states to the much simpler spectrum of ShG consisting of a single parity odd
excitation? The choice typically made is to identify the first breather of the SG model with
the massive excitation of ShG.

To obtain the mass, MShG, of the fundamental excitation in ShG, we then take
MShG(b) = m1(ib). Using eqs. (2.23) and (2.22) we arrive at [4]

MShG = 4
√
π

Γ
(

1
2+2b2

)
Γ
(
1 + b2

2+2b2
) [−µShG

πΓ(1 + b2)
Γ(−b2)

] 1
2+2b2

, (2.26)

where we have replaced µSG with −µShG — necessary as only µShG has the correct engi-
neering dimension. The plot of this quantity can be found on figure 4. A few remarks are
in order:

1. Keeping µShG fixed, the mass formula (eq. (2.26)) is not invariant under the weak-
strong duality b → 1/b of the ShG model. Moreover, its analytic continuation for
b2 > 1 gives generally complex values for MShG.
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Figure 4. Mass and ground state energy of the ShG model.

2. For any finite value of µShG, the mass MShG vanishes both at b2 = 0 and b2 = 1. The
nature of these zeros is however very different. Indeed, the zero at b2 = 0 disappears
if we rescale µShG → µShG/(8πb2) adopting the more conventional definition of the
coupling constant of the model used in the Feynman diagram expansion. However
on the approach to b2 = 1, we instead find a singular point:

MShG ' (1− b2)1/4, b2 → 1. (2.27)

3. In order to compare with the perturbative expansion (eq. (2.8)), it is necessary to
connect the renormalization scheme used to define µShG with that used to define m
(eq. (1.1)). Substituting eq. (2.19) into (eq. (2.26)) and expanding in b2, we have

MShG = m

(
1− π2

12 b
4 + 2π2 − 7ζ(3)

12 b6
)

+O
(
b8
)
, (2.28)

agreeing with the series expansion of the square root of expression eq. (2.8).

2.2.5 S-matrix of the ShG model and its duality

Having argued the fundamental excitation of the ShG model is to be identified with the
analytically continued breather of SG, we are now in a position to derive the S-matrix of
the ShG’s excitation. This S-matrix is nothing but the analytically continued breather-
breather S-matrix, SB1B1(θ), of SG which is given by

SB1B1(θ) = sinh θ + i sin πξ
sinh θ − i sin πξ , (2.29)

where θ = θ1 − θ2 and θi (i = 1, 2) is the rapidity of each of the breathers involved in the
scattering, with energy and momentum given by Ei = m1 cosh θi and pi = m1 sinh θi. This
amplitude has a pole at θ = iπξ,

S(θ) ' i 2 tan(πξ)
θ − iπξ

, (2.30)
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and, for ξ < 1, its residue is positive, i.e. this pole signals a further bound state, while for
ξ > 1 the residue changes sign, which can be interpreted as another signal of the absence
in the spectrum of the first breather for ξ > 1.

If we now continue this expression analytically by substituting −b2 for b2 in eq. (2.29),
we obtain for the exact 2-body S-matrix of the ShG model

S(θ) = sinh θ − i sin πB
sinh θ + i sin πB , (2.31)

where
B = b2

1 + b2
. (2.32)

This expression coincides with the S-matrix of the ShG model proposed in [1]. Although
this argument is amazingly simple, the final result is nonetheless surprising because a
duality has appeared. The S-matrix now is invariant under the weak/strong duality b↔ 1/b
or B ↔ 1 − B. However this duality is nowhere apparent in the Lagrangian (1.1) of
the model.

2.2.6 Vacuum expectation values in the SG and ShG model

Similar to the mass and S-matrix, the vacuum expectation values (VEVs) of the vertex op-
erators of the ShG model can be obtained as analytic continuations from the corresponding
expressions for the SG model, the eponymous FLZZ formula [4, 44]:

G(α) = 〈eαφ〉 ≡M−2α2

ShG G(α)

= M−2α2

ShG

Γ
(

1
2+2b2

)
Γ
(
1 + b2

2+2b2
)

4
√
π

−2α2

× exp
{∫ ∞

0

dt

t

[
− sinh2(2αbt)

2 sinh(b2t) sinh t cosh((1 + b2)t) + 2α2 e−2t
]}

, (2.33)

with G(α) = G(−α). Notice that the integral above converges for

|α| < 1
2 Q, (2.34)

a bound conceived for physical operators by N. Seiberg in his study of the allied Liouville
problem [45]. For values of α beyond the Seiberg bound, one can exploit an analytic
continuation of G(α). Obtaining this continuation is facilitated by the expression [46]:

G(α) = e−2γEα2 cos πα
Q

(2.35)

×
∞∏
k=1

e
2α2
k Γ2

(
1
2 + kB

2

)
Γ2
(

1
2 + k(1−B)

2

)
Γ
(

1
2 −

α
Q + kB

2

)
Γ
(

1
2 + α

Q + kB
2

)
Γ
(

1
2 −

α
Q + k(1−B)

2

)
Γ
(

1
2 + α

Q + k(1−B)
2

) .
From it one can see that the VEV, as a function of α, does not have poles but only zeros.
Besides the zero at α = Q/2, there is an infinite set of generically simple zeros located at:

α = ±αn,m = ±Q2 ∓
(
m

2 b−1 + n

2 b
)
, (2.36)

with m ≥ n ≥ 2 n ∈ 2 Z or n > m ≥ 2 m ∈ 2 Z.
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Formula (2.35) is positive for −Q
2 < α < Q

2 , but it changes sign at its zeroes. The vertex
operators, being the exponentials of Hermitian operators, are positive (semi-)definite. This
means that, outside the above domain, the analytic continuation cannot directly correspond
to the expectation value. We will therefore consider these values “unphysical”. The function
G(α) itself is self-dual, i.e. invariant under b → 1/b — for the proof one may benefit from
the identity ∫ ∞

0

dt

t

[
e−2t − e−2t/b

]
= − log b ,

but the VEV is not itself self-dual because of the presence of M−2α2

ShG . From the dependence
on α of this term, we can infer that the scaling dimension of the vertex operator V (α) is
∆(α) = −α2, a value which coincides with its conformal dimension with respect to the
Gaussian fixed point. Using the VEV (2.33) we can compute the expectation value of the
trace of the stress-energy tensor, an operator that, on general terms, is defined as

Θ(x) = 2πβ(µShG)O , (2.37)

where β(µShG) is the β-function of the coupling µShG which perturbs a critical point and
O its conjugate field. For the case at hand, we have

Θ(x) = 8π(1 + b2)µShG cosh bφ(x). (2.38)

Using the mass formula (eq. (2.26)) and the simplified expression of the VEV at α = b

〈e±bφ〉 = −M−2b2
ShG

π

16(1 + b2)
1

sin πB
Γ(1 + b2)
Γ(−b2)

Γ
(

1
2+2b2

)
Γ
(
1 + b2

2+2b2
)

4
√
π

−(2+2b2)

, (2.39)

we end up with

〈Θ〉 = πM2
ShG

2 sin πB . (2.40)

2.2.7 Questions arising from the analytic continuation b↔ ib

In this section we have presented a number of results for the ShG model (its spectrum, its
S-matrix, and the VEVs of its exponential operators) that are arrived at by analytically
continuing results from SG. The question of the validity of these analytic continuations
has to be raised. While the S-matrix of the ShG model is physically sensible for all b, the
expressions for the mass and VEVs are not. Given that the fundamental excitation of the
ShG is identified with the breather of SG and the SG breather ceases to exist for b < 1/

√
2,

what exactly can be said for b > 1/
√

2 is not entirely clear. And certainly the mass formula
for MShG for b > 1 breaks down entirely giving complex-valued results.

That we are able to match perturbative computations of the mass formula with the
exact expression is thus important. This gives us some confidence that the results for
MShG are valid for b < 1. This confidence will be increased in the following section where
we discuss the ShG model as a perturbation of a Liouville theory. However the validity
and interpretation of formulae at b > 1 including the S-matrix arising from the analytic
continuation remains, in our opinion, an open question.
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2.3 ShG and Liouville models

We have now considered the ShG model from the perspective of perturbation theory and
an analytically continued SG model. We now present a third way to look at the ShG model:
as a deformation of a Liouville field theory [4, 47, 48]. This third way will be essential for
us in what follows and results presented here will be used in our discussion of quantum
mechanical reductions of the ShG model in section 6.

The Liouville conformal field theory is defined by the action [4, 47]

SLiouville =
∫
d2x

( 1
16π (∂µφ)2 + µL : ebφ :

)
+Qφ∞ . (2.41)

Here the operator ebφ has conformal dimension 1 and µL is dimensionless. This vertex
operator has this dimension because we have coupled the field to a background charge of
strength Q = b + b−1. In general, in the presence of the charge at infinity, the conformal
dimension of the vertex operator eαφ becomes

∆(α) = α(Q− α). (2.42)

In order to ensure the theory is IR finite, the theory can be placed on a Riemann sphere
(of area A) with a metric

gµν(x) = ρ(x)δµν ; ρ(x) = (1 + π|x|2/A)−2. (2.43)

The ShG model then can be obtained as a perturbation of the Liouville action:

SShG = SLiouville + µLd
−4−4b2

∫
d2x ρ(x)2+2b2 : e−bφ : . (2.44)

Note that we have made a scale d that comes from normal ordering the vertex operator
explicit instead of absorbing it into µL. We use d here to distinguish this scale from ones
(i.e. a) previously introduced in normal ordering vertex operators in different (Gaussian)
schemes. µL here is the same dimensionless constant that appears in the original Liouville
action, eq. (2.41).

A key property of the Liouville field theory is that the exponential operators are
pairwise identified as [47]

eαφ(x) = R(α) e(Q−α)φ(x) , (2.45)

where R(α) is related to the Liouville reflection amplitude SL(P ) as

R

(
Q

2 + iP

)
= SL(P ) = −

(
πµLΓ(b2)
Γ(1− b2)

)−2iP/b Γ(1 + 2iP/b) Γ(1 + 2iP b)
Γ(1− 2iP/b) Γ(1− 2iP b) . (2.46)

This identification of the operators implies that their VEV must satisfy the reflection
relations

GL(α) = R(α)GL(Q− α),
GL(−α) = R(α)GL(−Q+ α).

(2.47)
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Here the L-subscripts indicate that we are taking these VEVs as defined in the perturbed
Liouville formulation of ShG and are not assuming these relations are the same as in
eq. (2.35). A solution of these equations can be obtained by an infinite iteration

GL(α) ∝
∞∏
n=0

R(α− nQ). (2.48)

With the further assumption of minimality, we can find a result equivalent to combin-
ing (2.26) and (2.33). This provides below an alternate way of understanding these formulae
without resorting to analytic continuation from results derived for SG.

In order to present this argument, we need to trace carefully the dimensions of the
quantities involved. This is an issue because in the Liouville approach the exponential
operator, eaφ, has dimension (2.42) whereas the dimension of this operator in the perturbed
Gaussian formulation of the ShG model is instead −α2. To understand this dimensional
transmutation, we follow along with ref. [4] and interpret properly the results.

To begin, we use the action (eq. (2.44) to write the following perturbative expansion
of the VEV of eaφ:

GL(α) = Z−1
∞∑
n=2

(−µL)n

n!

∫
d2y1 . . . d

2yn 〈eαφ(x) e−bφ(y1) . . . e−bφ(yn)〉L . (2.49)

Since in Liouville field theory the coupling µL can be absorbed into the field φ via a
redefinition of this field by an additive shift, it is easy to obtain the explicit µL dependence
of all correlators appearing in eq. (2.49). With the IR regulator in place, this expression
can be written as the following series:

GL(α) = µ
−α/b
L Aα(α−Q)

∞∑
n=2

[
µ2
L

(
A

d2

)2(1+b2)
]n
G̃Ln(α) , (2.50)

where G̃Ln(α) is independent of µL. The prefactor µ−α/bL also ensures the satisfiability of
the reflection relations (2.47), given the dependence on µL of the refection amplitude R(α),
see eq. (2.46). We see that our IR regulator appears in a dimensionless combination with
the scale d in this perturbative expansion. If we assume that this expression has a sensible
large A limit, the above series must behave asymptotically as

G̃L(α, t) ≡
∞∑
n=2

tn G̃Ln(α)→ G̃L(α) t−
α(α−Q)
2(1+b2) , t = µ2

L

(
A

d2

)2(1+b2)
. (2.51)

Thus in the large A limit, we obtain

GL(α) = d2α(α−Q) µ
−2α2/(2+2b2)
L G̃L(α). (2.52)

We thus see the VEV has dimension −2α(α−Q) as set by the UV cutoff d— the dimension
set by the Liouville CFT. At the same time its dependence upon µL is exactly what would
be expected from thinking of the ShG model as a perturbation of a free non-compact boson.
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We can now complete the argument showing how eq. (2.26) and eq. (2.33) can be
determined, at least in combination. Using eq. (2.47), we obtain [4] for the function G̃L(α):

G̃L(α) =
(
πΓ(1 + b2)

Γ(−b2)

)−α2/(1+b2)

× exp
{∫ ∞

0

dt

t

[
− sinh2(2αbt)

2 sinh(b2t) sinh t cosh((1 + b2)t) + 2α2 e−2t
]}

. (2.53)

If we compare G̃L(α) with the expression for G(α) presented in eq. (2.33) and eq. (2.26),
we see that we are consistent, i.e.

G(α)
µ−2α2

SG
= G̃L(α) . (2.54)

If we identify the couplings in the two formulations via

µShG = µLd
−2−2b2 ,

we can identify the expressions for the VEVs in the two formulations via

GL(α) = d−2αQG(α) . (2.55)

The appearance of the factor d in this expression is a reflection of the different normal
ordering schemes in the Gaussian vs Liouville pictures.

2.4 Generalized TBA equations for ground and excited state energies

One of the tools that we will use extensively in characterizing our TSM data is the thermo-
dynamic Bethe ansatz (TBA). The exact ground state energy, E0(R), at a finite volume R
from the TBA by using the ‘finite volume-finite temperature’ equivalence of the partition
function Z:

E0 (R) = R E0 −MShG

∫ ∞
−∞

du

2π cosh u log(1 + e−ε(u)) , (2.56)

where E0 = − limR→∞
1
R lnZ (R) is the ‘vacuum’ energy density equal to the VEV of

eq. (2.33):

E0 = M2
ShG

8 sin πB . (2.57)

The pseudo-energy ε (θ) in eq. (2.56) is defined as the solution of the nonlinear integral
equation

ε(θ) = MShGR cosh θ −
∫ ∞
−∞

dv

2πφ(θ − v) log(1 + e−ε(v)) , (2.58)

where the kernel is related to the S-matrix as

φ (θ) = −i d
dθ

logS(θ) . (2.59)

For excited states, the exact finite volume energies can be obtained either by careful analytic
continuations of the ground state TBA (following [49]), or by examining the continuum
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limit of an integrable lattice regularization [7]. A finite volume n-particle state can thus
be described by the multiparticle pseudo energy ε(θ|{ϑj}nj=1) ≡ ε(θ|{ϑ}) and a set of
quantization numbers {Ij}nj=1 satisfying the non-linear integral equation

ε(θ|{ϑ}) = MShGR cosh θ+
∑
j

logS(θ−ϑj−
iπ

2 )−
∫ ∞
−∞

dv

2πφ(θ−v) log(1+e−ε(v|{ϑ})), (2.60)

together with the additional quantization conditions

Qj({ϑ}) = 2πIj , Qj({ϑ}) = −iε(ϑj + iπ

2 |{ϑ})− π, j = 1, . . . , n. (2.61)

Given quantization numbers Ij ∈ Z, the rapidities {ϑ} and the pseudo energy ε(θ|{ϑ}) can
be determined self-consistently by efficient numerical methods. Note that the above phase
convention is ‘bosonic’ in the sense that it is permitted to have Ij = Ik, j 6= k (see also [50]).
Nevertheless, the resulting rapidities are always different, reflecting the fermionic nature of
the particles. The above ingredients provide the finite volume energy of the multiparticle
state as

E{Ij}(R) = R E0 +MShG
∑
j

coshϑj −MShG

∫ ∞
−∞

du

2π cosh u log(1 + e−ε(u|{ϑ})) . (2.62)

Notice that, neglecting all terms exponentially suppressed in MShGR in the finite volume
expression of the energies, these are nothing else but the well-known Bethe ansatz equations
of the ShG model. Moreover, regarding the mass MShG just as a parameter of these
equations (i.e. as a quantity independent on b), these equations are invariant under the
duality b↔ 1/b present in the S-matrix.

2.5 Summary

Let us summarise the main points of this section:

• As a Lagrangian theory, the ShG model has three equivalent descriptions: (i) one
arising from perturbation theory in b; (ii) one as a deformation of a Gaussian c = 1
CFT; and (iii) finally one as a deformation of a Liouville theory.

• In the Gaussian picture, the ShG model can be thought of as an analytic continuation
of the SG model. In this way, results can be derived for the mass spectrum, the S-
matrix, and the VEVs of the vertex operators.

• The S-matrix so obtained suggests the theory has a weak-strong duality: b ↔ 1/b.
However the mass formulas (and so the VEVs) are not invariant under this duality.

• The validity of this analytic continuation for values of b > 1 is unclear and there are
doubts about its validity even for b > 1/

√
2.

• There is however reason to believe the expressions for the mass and the VEV up to
b = 1 because of the availability of an alternate derivation of the VEVs using the
Liouville picture as well as consistency with perturbation theory.
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• For the ShG model, we have a formalism that allows us to compute in a numeri-
cally exact fashion the excited state energies at any volume R. These equations are
invariant under duality if we consider MShG to be merely a parameter

In the next two sections we will present the results coming from the truncated spectrum
method and testing the various expressions for the mass MShG, the S-matrix, S(θ), and the
VEVs 〈eαφ〉 presented here. This analysis will give us some insight, even if not definitive,
on the nature of the theory for b > 1.

3 Truncated spectrum methods

The purpose of this section is to give the reader an overview of truncated spectrum meth-
ods (TSMs) and their application to the sinh-Gordon model. TSMs were introduced by
Yurov and Zamolodchikov [20] to study the low-energy spectrum of 2D perturbed confor-
mal field theories. However the method is able to study the spectrum and matrix elements
of any theory whose Hamiltonian can be conveniently written as a sum of two terms

H = H0 +
∫ R

0
dxVpert(x) , (3.1)

where H0 is a base theory of which we assume to have a complete control of its energy
eigenvalues and eigenstates |En〉0. In particular, we assume that we are able to write down
the matrix elements of the second term in the full Hamiltonian, Vpert(x), in the basis {|En〉0}
of eigenvectors ofH0. From a computational point of view, the actual implementation of the
method requires both a denumerable set of energy states and finite-dimensional subspaces
of the Hilbert space of the model: the former condition is typically achieved by putting
the model onto a cylinder of finite circumference R in the spatial direction; the latter
condition is satisfied by restricting the set of eigenstates of H0 to those whose energies fall
below a cutoff Ec. Once a finite basis is obtained in this way, the truncated Hamiltonian is
constructed. This operator possesses the same matrix elements as the original Hamiltonian
in the truncated subspace, but acts trivially in the orthogonal subspace. Having this
in hand, one then solves, numerically, the eigenproblem of the truncated Hamiltonian.
Assuming for the moment that the dependence of the data on the cutoff Ec is smooth,
once the truncated Hamiltonian is diagonalized for different volumes, the infinite volume
quantities can be obtained by extrapolation via Lüscher’s principles [31, 51–53].

TSMs were first applied to the scaling Lee-Yang model [20] and the Ising model [21].
In both cases the numerical results reported therein were strongly convergent in Ec. In
the study of the perturbed tri-critical Ising theory, though, it was argued that the con-
vergence in Ec of the TSM results depends on the scaling dimension of the perturbing
operator [22, 31]. Various renormalization group approaches have been advocated to treat
cases where convergence in Ec is suboptimal. These strategies are both numerical [23] and
analytical [37–39, 54] (For a comprehensive review of such strategies see [24].) We will
demonstrate later that these strategies require modification (at the very least) for the case
of the ShG.
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The performance of TSMs is dependent on the choice of the computational basis used
to perform the calculations (or, in other words, how we split the Hamiltonian H into H0
and

∫
dxVpert). As with any variational method, we want to use a computational basis

that captures at the start features of the physics of the model at hand. In this paper we
study the ShG model by means of two different choices of H0 or computational bases:

1. In the first, discussed in section 4, we consider the ShG model as a deformation
of a Gaussian CFT and the corresponding non compact bosonic field expanded in
terms of an infinite number of oscillators and a single zero mode. When H0 is a
compact CFT on a cylinder and V is a relevant operator, one typically has control on
the magnitude of the interaction between different energy scales in the theory. The
ShG model is, however, different, and the low and high energy scales in the problem
become strongly coupled on the approach towards b = 1.

2. This leads us to our second basis choice, outlined in section 8, where we use the
basis of the ShG model itself as the computational basis. In particular, we use the
basis of the ShG model at one value of b to compute the properties of the model at
a different value of b. In this scheme, Vpert is the difference between two hyperbolic
cosines. This approach does immediately raise questions of circularity. We are, after
all, using conjectured information about the model at a point b0 as input, to obtain
results at point b1 6= b0. We will address this question in section 8, and attempt to
ameliorate this concern.

4 TSM for the ShG using a non-compact massless bosonic basis

In our first attempt to study the ShG model using TSMs, we employ a computational basis
based on a non-compact massless basis. In this section we review the details surrounding
this choice of basis.

4.1 Non-compact massless boson

In describing this basis the starting point is the mode expansion of the massless non-
compact bosonic field on an infinite cylinder of radius R:

ϕ (x, t) = ϕ0 + 8πΠ0
R
t+

∑
n 6=0

√
2
|n|

(
ane

i(knx−|kn|t) + a†ne
−i(knx−|kn|t)

)
; kn = 2πn

R
, (4.1)

where the oscillators are subject to the usual Fock commutator relations,[
an, a

†
m

]
= δnm , (4.2)

while the zero mode defines an effective 1D quantum mechanical system with the canonical
commutator [ϕ0,Π0] = i.
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The computational basis of states follows from the specification of H0 in eq. (3.1).
Here we will divide H0 into a zero mode HZM and non-zero mode HNZM part:

H0 = HZM +HNZM ;

HZM = 4π
R

Π2
0 + µShGR

(
R

2π

)2b2 [
: ebϕ0 : + : e−bϕ0 :

]
;

HNZM = 2π
R

(
L0 + L̄0 −

1
12

)
, (4.3)

where the Virasoro generators L0 and L̄0 appearing in HNZM are related to the Fock mode
operators as

L0 =
∑
n>0

na†nan , L̄0 =
∑
n<0
|n| a†nan .

Notice that HZM , unlike HNZM , is an interacting Hamiltonian. With this writing of H0,
our computational eigenbasis has a tensor product structure composed of a zero mode and
an oscillator sector:

H = HZM ⊗Hosc ≡ HZM ⊗HR ⊗HL .analyticV EV (4.4)

Here Hosc is decomposed into a chiral subspace, HR, is spanned by right-moving particles

HR =
{
a†n1 . . . a

†
nk
|0〉 , ni > 0

}
,

and an anti-chiral subspace, HL, is spanned by left-moving particles

HL =
{
a†−n1 . . . a

†
−nk |0〉 , ni > 0

}
.

4.2 Zero modes

Unlike the non-interacting HNZM , we have chosen a form for HZM that is non-trivial. We
do so following [26, 28, 42] so that HZM consists of a countable (i.e. discrete) basis of
states. We will denote this basis of states as follows

HZM = {|m〉 , HZM |m〉 = EZM,m|m〉}. (4.5)

Unlike the states in HNZM , in our implementation of the TSM the eigenstates |m〉 will be
found numerically. To do so, we need to choose a computational basis to represent HZM

in eq. (4.3) and, for this aim, we choose the position basis in the zero mode coordinate

HZM,computational = {|φ0〉, φ0 = −L+ na, n = 0, · · · , 2L/a} , (4.6)

where 2L is the length of the truncated zero mode space (rather than having a non-
compact zero mode, we assume it lies between −L and L) and a is our spatial discretization
parameter. In performing our computations here, we have always taken L large enough and
a small enough so that the eigenvalues and eigenstates (or at least their matrix elements)
of HZM have converged completely.
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4.3 Truncated Hilbert spaces

Having determined HZM , we are now in a position to define the truncated basis, HT ,
for the problem as a whole. We truncate each part of the Hilbert space separately. In
particular we write

HT = HZM,T ⊗HR,T ⊗HL,T ;

HR,T =
{
a†n1 . . . a

†
nk
|0〉 , ni > 0,

k∑
i=1

ni ≤ Nc

}
;

HL,T =
{
a†−m1 . . . a

†
−ml |0〉 ,mi > 0,

l∑
i=1

mi ≤ Nc

}
;

HZM,T = {|m〉,m = 1, · · · , NZM , EZM,1 ≤ · · · ≤ EZM,NZM } . (4.7)

The cutoff is then implemented in terms of two separate parameters, Nc, the level of which
we cut off the chiral oscillator mode part of the Hilbert space, and NZM , the number of
zero mode eigenstates of smallest energy (w.r.t. to HZM ) that we keep. We typically work
not in this full space, but its zero-momentum counterpart composed of tensored states from
HR,T and HL,T that satisfy

k∑
i=1

ni =
l∑

i=1
mi.

The last step of forming the Hamiltonian matrix consists of specifying the interaction
part of the Hamiltonian and its corresponding matrix elements. In the zero-momentum
subspace, P = 0, we can write∫ R

0
dxVpert(x) = δP,0µShG

(
R

2π

)2b2

R
[
ebϕ0

(
: ebϕ̃(0) : −1

)
+ e−bϕ0

(
: e−bϕ̃(0) : −1

)]
, (4.8)

where δP,0 reflects the projection onto the zero momentum subspace and we have separated
out the zero mode from the field:

ϕ(x, τ) = ϕ0(τ) + ϕ̃ (x, τ) ≡ ϕ0(τ) + ϕR(x, τ) + ϕL(x, τ) + ϕ†R(x, τ) + ϕ†L(x, τ);

ϕ0(τ) = φ0 − i
8πτ
R

Π0. (4.9)

In the above, normal ordering is defined as

: ebϕ(x,τ) :≡ ebφ0(τ)ebϕ
†
R(x,τ)ebϕR(x,τ)ebϕ

†
L(x,τ)ebϕL(x,τ) , (4.10)

where

ϕR (x, τ) =
∑
n>0

√
2
|n|
ane

iknx−knτ , ϕL (x, τ) =
∑
n<0

√
2
|n|
ane

iknx−|kn|τ . (4.11)

The matrix elements of the chiral parts of : ebϕ̃(x): admit a closed analytic expression〈
n1, . . . , nk

∣∣∣ebϕ†RebϕR ∣∣∣m1, . . . ,mk

〉
=

=
k∏
q=1

1√
nq!mq!


min(nq ,mq)∑
n1q=0

n1q!
(
nq
n1q

)(
mq

n1q

)(
b

√
2
q

)nq+mq−2n1q
 , (4.12)
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where the chiral state vector |n1, . . . , nk〉 is a normalized state having nq right-moving
particles with momentum 2πq

R for each q ∈ {1, . . . , k}. Using this expression together with
the knowledge of the (numerical) zero mode matrix elements

〈m|ebϕ0 |n〉 ,

we can construct the full matrix elements of Hint.

4.4 Methods of diagonalization

Once we have collected all the matrix elements of both H0 andHint, for any truncated space
we have a finite dimensional matrix to diagonalise. To find its eigenstates and eigenvalues
we can proceed in two ways:

• We can use exact diagonalization perhaps augmented with a numerical renormaliza-
tion group. This latterprocedure will be discussed further in section 5.2.

• We can also use iterative methods that, thanks to their reverse communication pro-
tocols, do not require us to store the full Hamiltonian in memory. The only cost
that we need to pay is that we are restricted here to computing the low-lying eigen-
values. However for our purposes here this is not a limitation. Using the Jacobi-
Davidson method and exploiting the tensor product structure (i.e. eq. (4.4)) of the
Hilbert space, we can treat matrices arising from truncation parameters of up to
(Nc = 20, NZM = 24), corresponding to a truncated Hilbert space of size approxi-
mately 2.4 × 107. We elaborate on the usage of the tensor product structure in ap-
pendix E. We specifically use the JDQMR_ETOL algorithm2 provided in the package
PRIMME [55, 56].

5 TSM results for ShG model

In this section we present our TSM results based on the non-compact bosonic computational
basis for various quantities in the ShG model. In the first part, we show how the TSM
results for the ShG are robust at small b (b � 1), but begin to have strong cutoff effects
in Nc (and, to a lesser extent, Nzm), deviating noticeably from exact results predicted
by the thermodynamic Bethe ansatz (TBA), as b exceeds 1/2. We then discuss our first
strategy in dealing with these cutoffs: a power law extrapolation in Nc (and Nzm). We
show that this procedure in fact produces robust results — albeit still imperfect as b→ 1
is approached. We then turn to other quantities that we are able to measure using TSM
methods, such as the VEVs of the exponential operators and the S-matrix.

In the second part of this section we consider standard renormalization group strategies
for alleviating the effects of the cutoff. We show that while these strategies work at small
values of b, they lead to sub-optimal (or even unphysical) results at larger values of b which

2An earlier version of the method (without reverse communications protocols) was presented to check
exponential finite volume corrections of matrix elements in sinh-Gordon theory [42], anticipating the present
paper. There the computations were restricted to the small-coupling regime.

– 22 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

are closer to the self-dual point. However this failure provides the motivating drive to
consider other strategies for treating the sensitivity of TSM results to the cutoff that form
the next three sections that follow this one. It will also set the scene for understanding
why the power law extrapolation used in the first part of this section is robust.

5.1 Results

We present our numerical results with the aim to answer the following specific questions:

1. What is the performance of the TSM applied to the ShG model? What level of
precision can be achieved below the self-dual point (compared directly to finite volume
theoretical quantities), and how does it depend on the coupling b and the volume R?

2. Is there a simple extrapolation that robustly improves the accuracy of the numerics?
How much does it improve?

3. Not assuming any special properties of the ShG model (in other words, relying only
on standard TSM analysis), to what extent can the conjectured infinite volume pa-
rameters (mass, vacuum energy density, S-matrix) be reproduced?

4. How effectively does TSM reproduce the one-point functions of vertex operators? In
particular, what happens when we probe them outside the region of validity of the
FLZZ formula, eq. (2.33)?

The following results are organized according to the four points listed above.

5.1.1 Finite volume spectrum

Let us begin with the finite volume spectrum. In figure 5 we present results for the ground
state energy and the first excited state energy for different values of b at fixed volume
MShGR = 1, whereMShG is the physical mass. The computations were done using different
chiral cut-offs Nc, at a fixed zero mode cutoff NZM . On the other hand, we have also
calculated the corresponding quantities by numerically integrating the (excited state) TBA
equations eq. (2.62). We consider the difference between TSM and TBA (taking into
account the vacuum energy density (2.57)) to be the error of the former. The energy
levels are normalized with respect to the free mass m defined in eq. (2.19) and we plot
the differences between the TBA computations and the TSM data on a log scale. The
largest cutoff, Nc = 12, NZM = 24, at which data are presented has been obtained using a
truncated Hilbert space of size 3× 105.

It is apparent that the errors are slightly different for the ground state and the excited
state, but the overall pattern is very similar: for small b, even a raw cutoff can produce
precise results, and a reasonable increase in the cutoff Nc actually has a strong positive
effect on the precision. On the other hand, the error increases exponentially in increasing
the coupling constant b and, at the same time, the precision becomes less sensitive to the
cutoff. In the immediate vicinity of the self-dual point, the error essentially becomes O(1),
indicating that the naive TSM is limited to a region below the self-dual point. As a first
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(b) E1,exc at different b’s.

Figure 5. Here we present results on the behavior of the ground state energy (a) and first excited
state (b) as a function of b at fixed MShGR = 1. We present results for 3 different values of the
cutoff (Nc = 6, 9, 12, NZM=24). The energies are normalized with respect to the free mass m. We
have plotted the results as differences between the numerical values and the expected exact values
from TBA.
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(a) Raw TSM (Nzm = 42) and Nzm-
extrapolated values of Egs as a function of Nc.
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(b) Values of Egs after extrapolation in Nc, as
a function of Nzm.

Figure 6. Here we present the two extrapolation schemes for the cutoffs Nc and NZM . We
perform the extrapolation for data of the ground state energy at b = 0.95, MShGR = 1). In a) we
first extrapolate in NZM , plotting the results at each Nc, then performing a further extrapolation
in Nc. The results of this extrapolation is shown in the legend. In b) we reverse the order of
extrapolations. Note that the data has a much stronger dependence on Nc than on NZM .

step to improve the results, we propose an (at this point ‘empirical’) extrapolation scheme,
which involves fitting the numerical results with power laws in Nc and NZM .

In figure 6, we present two implementations of this power law fitting at b = 0.95,
MShGR = 1. In the first, presented in figure 6(a), we first extrapolate in zero mode
number NZM and then perform a further extrapolation in Nc. Figure 6(a) then shows
the result of this first extrapolation in NZM at each Nc. We see that the results of this
extrapolation differ little from the raw data determined at NZM = 42. Having done this,
we then perform a separate extrapolation with respect to the chiral cutoff Nc. The result,
reported in the legend of figure 6(a) is about a 3% error in units of the free mass m. We
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Figure 7. The behaviour of the Nc-extrapolated TSM data as a function of b.
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Figure 8. Power law exponents as a function of b for the extrapolation in Nc given in eq. (5.1).

also perform the same extrapolation in Nc for the raw data obtained at NZM = 42. The
result is essentially identical. In figure 6(b), we consider the second implementation. This
is obtained by performing the two extrapolations in the opposite order but for the same
set of input data. Shown in figure 6(b) is the result of the first extrapolation in Nc at fixed
NZM . The second extrapolation in NZM lead to results essentially the same as the results
reported with the first scheme.

We now consider TSM data over a range of values of b. Having seen that the data is
essentially converged at NZM sufficiently large, we work at fixed NZM and only consider
extrapolations in Nc. In particular we use the fitting function:

E(Nc) = Eextrap + d ·N−νc . (5.1)

In figure 7 we report our results for the ground state and first excited state energies at
MShGR = 1. We show the raw TSM data at different Nc together with the extrapolated
values (red dots). In most cases, the extrapolation improves the numerical data by at least
an order of magnitude. We note that the cusp-like feature appearing in the extrapolated
data is due to a sign change of the extrapolated error, of which we take the absolute value
to produce the log-scale plot. The precise position of the cusp is also volume-dependent.
In figure 8 we present the fitting exponent ν(b) (see eq. (5.1)) coming from these extrap-
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Figure 9. Here we present TSM data (dots) for the first 8 energy levels after Nc extrapolation as
functions of the dimensionless volume MShGR in the zero momentum sector. The vacuum energy
E0 is subtracted and energies are normalized with respect to the mass MShG. The color coding of
the TBA (solid) curves is as follows: the ground state is depicted in blue, the one-particle state
in green, two-particle states in red, three-particle states in orange, four-particle states in brown,
five-particle states in teal, and six-particle states in pink.

olations. We see that at small b the exponent is large indicating that the data is rapidly
converging in Nc while at values of b approaching the self-dual point, the exponent be-
comes much smaller. We will provide a partial explanation for the behavior of the power
law in section 7.

Having presented results as a function of b, we now consider the spectrum as a function
of R. In figure 9 we present data for the low-lying finite volume spectrum (after extrapo-
lation in Nc) after subtraction of the exact vacuum energy density (2.57) for two different
couplings, b = 0.4 and b = 0.8. The TSM data is plotted against the numerical solution
of the exact TBA equations (shown in the plots with continuous curves). It is apparent
that TSM follows very closely the theoretical excited-TBA data for b = 0.4, while small
discrepancies become visible at b = 0.8, especially at larger volumes. Contrary to the pre-
vious plots, here we opted for normalizing the energies with respect to the physical mass
MShG, owing to the emphasis of finite volume corrections presented in these plots.

We close the first part of this subsection with a contour plot which shows the order of
magnitude of errors as a function of both b and the dimensionless volume MShGR at the
same time. The error can be smaller than 10−8 in the small-R region of the perturbative
sector, and remains below 10−4 over a wide range of couplings and volumes. On the other
hand, the error increases exponentially as either the volume or the coupling is increased.
We note that the apparent ‘islands’ on the top and the ‘valley’ around MShGR = 9 are due
to the same sign-changing phenomenon that causes the cusps in figure 7.

5.1.2 Determination of mass, bulk energy and S-matrix

In this subsection, we present and discuss the TSM numerical results for the particle mass,
MShG, the bulk energy density, and the S-matrix of the ShG model.
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Figure 10. Base 10 logarithm of the normalized differences between the TSM ground state energies
and their TBA counterparts for different couplings and volumes.

Physical mass. We have measured the physical mass MShG of the ShG model through
taking the difference of the two lowest energy levels. Ideally, this difference converges
to the physical mass in the R → ∞ limit. In practice, for large volumes, truncation
effects produce an overestimate for the mass. On the other hand, small-volume effects also
produce an overestimate. As a consequence, we determine the mass as the minimum of the
volume-dependent energy difference.

The results are shown as the function of b in figure 11(a) and (c). In (a) we plot the
TSM data (extrapolated) against the theoretical curve expected from eq. (2.26). In (c)
we plot, on a logarithm scale, the absolute value of the differences between the measured
mass and the same theoretical value. For comparison here, we show the differences of the
perturbative expansions of the exact mass formula, truncated at various orders with their
exact counterpart. This gives an idea of the relative precision of TSM with respect to a
perturbative expansion. We see that for intermediate couplings, the TSM outperforms a
5-loop (up to and including O(b10)) perturbative expansion of the mass, coming close to
6-loop accuracy. Approaching the self-dual point, the region of viable TSM data shrinks
to a region in MShGR where the exponential corrections become relevant and therefore the
standard TSM methods are not available. (Of course, in the sinh-Gordon model everything
is supposedly known about these exponential corrections, but for now we intentionally opt
for neglecting any a priori knowledge on the integrability of the model.)

Vacuum energy density. Let us now turn our attention to the vacuum or bulk energy
density, E0. The measurement of this quantity proceeds by measuring the slope of the
ground state energy E0(R) ≈ E0R. For small R, this function enjoys a conformal R−1

dependence up to logarithms, and is monotonically increasing. For intermediate volumes,
it is essentially linear. The bulk energy needs to be measured in this linear region since
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Figure 11. Measured mass (a) and vacuum energy (b) from TSM (blue dots) plotted against the
solid theoretical curve. In panels (c) and (d), the error in the TSM results (i.e. the normalized
difference between the TSM results and the theoretical values) are presented. We also present the
differences between a Feynman perturbative expansion in b with the exact formula. Shown are
differences for orders b4 (blue), b6 (orange), b8 (green), b10 (red), b12 (purple), and b14 (brown).

for larger volumes, truncation errors are expected to dominate. Therefore the best first
approximation to E0 is the minimum of the numerical derivative of E0(R). In a general
field theory, the leading exponential (Lüscher) correction to the ground state energy is of
the form

E0(R) = RE0 −M
∞∫
−∞

du

2π cosh u e−MR coshu . (5.2)

Substituting the mass measured previously and subtracting this correction from the nu-
merical ground state energy improves the precision. The results as a function of b are
shown in figure 11(b) and (d) in the same fashion as presented in (a) and (c) of this same
figure for the physical mass. Like with figure 11(c), we show the differences between a
finite order Feynman perturbative computation and the exact value for orders b4 through
b14. Note that the convergence radius of the series for E0 is only bmax = 1/

√
2 as opposed

to 1 for the mass, MShG.3 We thus only show the perturbative curves up to this point in b.
3This can be seen from the analytic structure of eq. (2.57).
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Conventional TSM is able to measure the bulk energy with an error of 10−3 even in this
strongly coupled region.

S-matrix. Finally, let us consider the measurement of the S-matrix from TSM data.
For asymptotically large volumes, two-particle states with zero overall momentum (each
particle having rapidity ±θ) are quantized by the requirement that the multi-particle wave-
function be one-valued on the cylinder

eiMShGR sinh θ S(2θ) = 1 , analyticV EV (5.3)

which, after taking the logarithm, provides the Bethe-Yang quantization condition

δ(2θ) +MShGR sinh(θ) = 2πn, n ≥ 0, (5.4)

where we have introduced the phase shift S(θ) = eiδ(θ). Eq. (5.4) is a quantization con-
dition which determines the rapidity θ. In fact, it is the large-volume limit of the TBA
quantization condition (2.61) for the state {I1 = −n, I2 = n}. Once this quantity is known,
we have access to the energy of the two-particle state since, up to exponential corrections,
the energy is a sum of one-particle terms

ElargeR = RE +MShG

k∑
j=1

cosh(θj) . (5.5)

We focus on the lowest energy two-particle states in the zero-momentum sector by taking
n = 0, 1 in (5.4). Numerically, for large enough volumes, this corresponds to the fourth
lowest energy level. In this domain, we express the rapidity θ in terms of the energy
difference between the two-particle state and the vacuum:

θ = Arcosh
(
E − E0
2MShG

)
. (5.6)

Thus we can directly measure the phase shift appearing in eq. (5.4). The result extracted
from the n = 0 and n = 1 two-particle states is shown on figure 12(a).

In the following, we have assumed that the S-matrix indeed consists of a single CDD-
like factor, namely

S(θ) = sinh θ − i sin πB
sinh θ + i sin πB , (5.7)

but we have treated the quantity B in the S-matrix amplitude as a parameter to be fitted
to the numerical data. To perform this fitting, we have only utilized our n = 1 TSM data
in region of R where no level crossings occur. The numerical phase shift obtained in this
way is more robust than that coming from the n = 0 state. We estimate the phase shift by
two methods. In the first method, we increase the parameter B until one of the numerically
determined phases coincide with the theoretical curve. The value of B at this point is the
estimate. In the second method, we instead look at the two largest rapidities available
from the n = 1 data. We then find the value of B for which eq. (5.7) best approximates
the values of δ(θ) at these rapidities. The difference of the results of the two methods is
considered to be the error of the measurement.

We will return to the measurement of the above quantities by an alternative method
in section 6.5.
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(a) Measured versus theoretical phase shifts
obtained from the n = 0 and n = 1 two-particle
states at b = 0.4.
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(b) Measurement of the parameter B of the
S-matrix as a function of b.

Figure 12. Measurement of the S-matrix.

5.1.3 One-point functions

TSMs can be used to measure one-point functions (either on the vacuum or on exited
states) by sandwiching Schrödinger-picture operators between the numerically obtained
eigenstates. Since the method directly uses the eigenvectors, the resulting precision is
inevitably more limited as compared to the energy spectrum. Nevertheless, it is possible
to compare the numerical estimate of the VEVs of the exponential operators to their
theoretical FLZZ formula eq. (2.33) in a wide region.

Beyond the usual b and R-dependence, the convergence of the VEV of the exponential
operators, 〈eaϕ〉, heavily depends on the exponent a of the operator. We have again tried
to control the cutoff dependence of the one-point functions by power-law fits on the chiral
cutoff Nc. The functional form eq. (5.8) is helpful as long as b is small enough. Generally
the cutoff extrapolation becomes less stable as the coupling or the volume is increased.
For larger couplings, we have found it advantageous to use a sum of two power laws as a
fitting function:

E(Nc) = Eextrap + d1 ·N−ν1
c + d2 ·N−ν2

c . (5.8)

We show the dimensionless quantity G(a) as a function of a in figure 13, for two different
couplings and at R = 6. For small to moderate a, the extrapolated numerics agrees with
the FLZZ formula to at least to 1%. Regardless of the coupling, the error (and the cutoff
dependence) always becomes significant before reaching the first pair of zeros (located at
the Seiberg bounds ±Q/2) of the analytic VEV formula. For larger couplings, it is possible
to achieve higher precision by performing the computations at a small volume. However,
in this case one needs to take into account the finite volume corrections of the VEV, which
are available through the LeClair-Mussardo formula [8] in the form of an infinite series:

G(a,R) = G(a)
(

1 +
∞∑
n=1

1
n!(2π)n

∫ n∏
i=1

dθi
1 + eε(θi)

Can({θi})
)
, (5.9)
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(a) Expectation values for b = 2√
8π ≈ 0.4.
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(b) Expectation values for b = 4√
8π ≈ 0.8.

Figure 13. Vacuum expectation values for µShG = 0.1, R = 6. The solid green curve is predicted
by the FLZZ formula. Raw TSM results are shown with blue dots, while their power-extrapolated
counterparts are shown orange. The a > Q/2 (unphysical) domain is highlighted with red.
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(a) Expectation values for b = 4√
8π ≈ 0.8.
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(b) Expectation values for b = 5√
8π ≈ 0.99.

Figure 14. Vacuum expectation values for µShG = 0.1, R = 2. Raw TSM results are shown with
blue dots, while their power-extrapolated counterparts are depicted with red dots. The R → ∞
theoretical value of the VEV is plotted as a dashed green line. The finite volume corrected version
involving up to 2nd order terms in the Leclair-Mussardo series is shown as a red solid curve.

where Can is the connected evaluation of the n-particle diagonal form factor for the opera-
tor eaϕ:

lim
∀εj→0

F a2n(θn + iπ + εn, . . . , θ1 + iπ + ε1, θ1, . . . , θn) = Can({θi}) +O(ε−1). (5.10)

In figure 14, we show the numerical results for R = 2. Exploiting finite volume corrections
extends the availability of TSM estimates of G(a) up to b ≈ 0.8, as long as a� Q/2.

5.2 Renormalization group improvements

In the previous section, we presented a series of results for various quantities in the ShG
model as measured with TSM. We showed in general that as one moves towards the self-
dual point, the quality of the results found using TSM deteriorates in comparison to the
available exact predictions. This deterioration is largely due to the presence of finite cutoff
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effects. There are a standard set of renormalization group-like techniques that are employed
in ameliorating the effects of a finite cutoff. We show in this section that these strategies are
not practical for the sinh-Gordon model close to the self-dual point. However this failure
is instructional and point the way to a better understanding of some of the peculiarities
of the model and new strategies to tackle them. The strategies take two forms: analytical
and numerical. We discuss the analytic form first.

5.2.1 Analytic renormalization group

In presenting how one can analytically take into account the effects of states above the
cutoff, we follow the discussion in ref. [54]. The first step is to divide the Hilbert space, H
into two parts: H = Hl ⊗ Hh. Here Hl, the low energy Hilbert space, consists of all states
of the form

Hl =
{
a†n1 . . . a

†
nk
|0〉 ⊗ a†−m1 . . . a

†
−ml |0〉 ⊗ |s〉;

k∑
i=1

nk ≤ Nc,
l∑

m=1
nl ≤ Nc; s = 1, · · · , NZM

}
, (5.11)

while Hh, the high energy part of the Hilbert space consists of states where

Hh =
{
a†n1 . . . a

†
nk
|0〉 ⊗ a†−m1 . . . a

†
−ml |0〉 ⊗ |s〉 ;

k∑
i=1

nk > Nc or
l∑

m=1
nl > Nc; s = 1, · · · , NZM

}
. (5.12)

Here note we have expressed Hl and Hh in a way reflective of the tensor nature of the
computational Hilbert space (at least as conceived as that of a free massless non-compact
boson). We are also working at a fixed number of zero mode states, NZM , assuming in
effect, that this number of zero mode states leads to completely convergent results (an
assumption borne out by our numerics reported in the previous section). In particular the
high and low energy parts of the Hilbert space have the same zero mode content.

We can thus write our Hamiltonian in the following manner:

H =
[
Hll Hlh

Hhl Hhh

]
, (5.13)

where Hij (i, j = h, l) corresponds to the Hamiltonian matrix restricted to the two subdi-
visions of the Hilbert space. If we have an eigenstate[

cl
ch

]
, (5.14)

with energy E, we can write the Schrödinger equation as

Hllcl +Hlhch = Ecl,

Hhlcl +Hhhch = Ech. (5.15)

– 32 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

By eliminating ch from the above set of equations, we have(
Hll +Hlh

1
E −Hhh

Hhl

)
cl = (Hll + δH)cl = Ecl. (5.16)

In doing so, we have reformulated the eigenvalue problem in terms of coefficients of states
that live in the low energy Hilbert space alone.

Now we are studying a Hamiltonian of the form H = H0 + µShGV with V given by

V = 2
(
R

2π

)2b2 ∫ R

0
dx [: cosh bφ(x) : − cosh(bφ0)] . (5.17)

We can then expand δH in powers of µShG, giving

δH = −µ2
ShGVlh

1
H0 − E

Vhl

+ µ3
ShGVlh

1
H0 − E

Vhh
1

H0 − E
Vhl +O(µ4

ShG). (5.18)

Introducing the (imaginary) time dependence of operators in the interaction picture,

O(τ) = eH0τO(0)e−H0τ , (5.19)

we can rewrite eq. (5.18) as

δH = −µ2
ShG

∑
c∈Hh

∫ ∞
0

dτ e(E−H0)τV (τ)|c〉〈c|V (0) +O(µ3
ShG)

≡ δH2 +O(µ3
ShG). (5.20)

From here on we introduce another chiral cutoff Λ > Nc. We are going to focus upon
the most singular (in Λ) contribution to δH2 and so drop from V in eq. (5.17) the term
proportional to cosh(bφ0). Of course if we were interested in using δH2 in a quantitative
fashion, we would need to include this term.

We can readily analyze δH2 through the use of OPEs. OPEs allow us to take into
account the insertion of the partial resolution of identity in eq. (5.20) that involves only
the states from the high energy part of Hilbert space, Hh. Following the procedure outlined
in [24], the matrix elements of δH2 satisfy

(δH2)ab ≈ −4δPa,Pbµ
2
ShGR

2
(
R

2π

)4b2 ∑
ϕ

Cϕ

Λ∑
n=Nc+1

S2
(
n,−2b2 −∆ϕ

)

×
( 1
Ea − E + 2π

R (2n− 2b2)

)
〈a|ϕ(0, 0)|b〉, (5.21)

where we have defined
S(n, a) ≡ 1

n!
Γ(a+ n)

Γ(a) , (5.22)

and Λ → ∞. In eq. (5.21), the states a, b are drawn from Hl, δPa,Pb enforces momenta
conservation, the sum

∑
ϕ runs over all fields, φ (of chiral dimension ∆φ), that appear in
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the OPE of cosh(bφ) with itself, and Cϕ are the corresponding structure constants. Here
the relevant OPEs are given by

: cosh(bφ(x1, τ1)) :: cosh(bφ(x2, τ2)) : = 1
2 |z1−z2|4b

2 |z1|−2b2 |z2|−2b21

+ 1
4 |z1−z2|−4b2 |z1|−2b2 |z2|6b

2 : e2bφ(x2,τ2) :

+ 1
4 |z1−z2|−4b2 |z1|−2b2 |z2|6b

2 : e−2bφ(x2,τ2) : (5.23)

where
z1,2 = e−

2π
R

(τ1,2+ix1,2), z̄i = z∗i . (5.24)

These OPEs are obtained by combining the OPEs of the oscillator part and the zero mode
part (see eq. (4.9)) of the field, i.e.

: ebφ̃(x1,τ1) :: eσbφ̃(x2,τ2) : = |z2|4σb
2

|z1 − z2|4σb2
eb(1+σ)φ̃(x2,τ2) + · · ·

ebφ0(τ1)eσbφ0(τ2) = |z2|2b
2 |z1|−2b2eb(1+σ)φ0(τ2) + · · · , (5.25)

where σ = ±1. As discussed in ref. [24], we obtain the sum
∑
n>Nc appearing in eq. (5.21)

by expanding the term |z1 − z2|−4σb2 that appears in the OPE of the oscillator part of the
fields into a Taylor series in |z1/z2|. We then only keep the terms in the series at order
Nc + 1 and above, up to Λ.

We now focus on the part of δH2 involving the operator cosh(2bφ):

(δH2)ab = 4π2µ2
ShG

(
R

2π

)3+4b2 Λ4b2−2

2− 4b2 (: cosh(2bφ) :)ab. (5.26)

We can see that this term diverges as b2 → 1/2 and that furthermore for b2 > 1/2, the
correction tends to ∞ as the chiral cutoff, Λ, tends to ∞. This means any strategy to
compute corrections to TSM results perturbatively due to states coming from above the
cutoff fails for values of b close to the self-dual point.

This result is actually worse than the second order result implies. At the third order,
we can again use OPEs and find that the most singular third order contribution to δH3
goes as

(δH3)ab ∼ δPa,Pbµ
3
ShGR

5+6b2Λ12b2−4(: cosh(3bφ) :)ab. (5.27)

Here we see the third order term has a pathological dependence on Λ when b2 > 1/3, even
further away from the self-dual point. We can continue this to n-th order, finding

(δHn)ab ∼ δPa,Pbµ
n
ShGR

2n−1+2b2nΛ2(n2−n)b2−2n+2(: cosh(nbφ) :)ab. (5.28)

Here we see that the situation becomes worse and worse as we go to higher and higher
perturbative order: at n-th order, the correction diverges as Λ→∞ for b2 > 1/n.

From this analysis we can see that the perturbative series developed here is essentially
a small-volume expansion in the parameter R2+2b2 . This implies that the ground state
energy does not have a proper expansion in powers of R2+2b2 around the CFT limit R→ 0.
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We also want to remark that the pathologies identified here for the ShG do not apply to its
analytically continued cousin, the sine-Gordon model. In the sine-Gordon, this perturbative
analysis will give rise to divergences for b2 > 1/2. However these divergences occur in the
identity channel in terms of the OPE of eq. (5.23). This means the most singular part of
δHn is proportional to 1 and so leads only to corrections to the energies that are state
independent, i.e. energies measured relative to the ground state energy are unaffected.
Alternatively one can add a single counterterm to the sine-Gordon Hamiltonian to remove
this divergent behavior.

As we have stated, in this section we have focused on the leading order singularity
at each in perturbative theory as determined by the OPEs. However it is not difficult to
determine the subleading divergences. At order n, one can write (δHn)ab as

(δHn)ab ∼ δPa,Pbµ
n
ShGR

2n−1+2b2n ∑
k=n,n−2,n−4,··· ,nmod2

ck(b2)Λ2(k2−n)b2−2n+2 : cosh(kbφ) :ab,

(5.29)
where ck(b2) is some numerical coefficient. There are further singular contributions from
descendants. We thus see that not only the leading terms are problematic. We see that the
operators : cosh(kbφ): have diverging coefficients (as Λ→∞) once k2 > n+ (n− 1)/b2.

5.2.2 Numerical renormalization group

In section 5.2.1 we demonstrated that a perturbative analytic renormalization group is
not a tool that can be used to take into account the states above the truncation Nc. In
this section we show that the non-perturbative numerical renormalization group [23], while
not beset by pathological divergences, also is challenged for values of b close the self-dual
point. The basic idea of the numerical renormalization group (NRG) for the TSM is to
adapt the Wilsonian renormalization group invented to attack the Kondo problem to the
case at hand. Normally in applying TSM, one introduces a cutoff, here Nc, and either does
a single exact diagonalization or uses Jacobi-Davidson (JD) methods to obtain the energies.
With the NRG, one trades a large single diagonalization for a sequence of smaller exact
diagonalizations. This sequence is determined by two parameters Ns and ∆. The size of
matrices that one diagonalizes in the sequence is (Ns + ∆)× (Ns + ∆). These parameters
should be thought of as variational in nature. In general the larger these parameters are,
the closer one gets to reproducing the exact diagonalization result. We will not describe
this procedure in further detail here but refer the reader to refs. [23, 24].

In figure 15 we present results for the computation of the ground state energy at two
different b’s. We do so at cutoffs of Nc = 14 and NZM = 24. The Hilbert space size
at such cutoffs is 492888. In figure 15 we show the results of the NRG computation for
different values of Ns = ∆ ranging from 2500 to 10000 (i.e. we are diagonalizing sequences
of matrices with size from 5000× 5000 to 20000× 20000). We see that at even the largest
value of Ns = ∆ = 10000 considered, the results are not converged. We thus fit a power
law to the evolution of Egs as a function of Ns = ∆ and extrapolate the power law to where
it would correspond to solving the problem exactly (i.e. finding the low lying eigenenergies
of a 492888 × 492888 matrix, corresponding to evaluating the power law fit function at
Ns = 492888/2). The result is reported in figure 15. We see that for b = 1/

√
2, the
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Figure 15. The ground state energy computed at Nc = 14 and NZM = 24 as a function of
NRG block sizes Ns = ∆. Left panel: Computation at parameters b = 0.707, R = 3.0, µShG =
0.1. Extrapolating the NRG data to where it would correspond to a JD computation we obtain
Egs, NRG extrap. = 0.65807 in comparison to the exact JD value, Egs, JD = 0.6580901. Right:
Computation at b = 0.919, R = 3.0, µShG = 0.1. Here we find Egs, NRG extrap. = 0.5067 and
Egs, JD = 0.5059212.

agreement between the NRG at the largest value of Ns considered, Ns = ∆ = 10000, and
the exact JD value is good to 3 significant digits. Upon NRG extrapolation, this improves
to 4 significant figures. For b = 0.919, much closer to the self dual point, agreement before
extrapolation is only at 2 significant digits and remains at 2 significant digits after (even
if the extrapolation does improve the NRG result).

The performance of the NRG close to the self-dual point is considerably worse than
for a model like the sine-Gordon model where we see agreement at the 5 significant digit
level for NRG block sizes far smaller than those considered here (Ns = 1500,∆ = 500)
and without extrapolation (for example compare the results here with table IV of section
VI of ref. [24]). This we believe is a manifestation of the slow convergence as a function
of Nc in the ShG model that we have observed elsewhere in this paper. While obtaining
4 significant digits is usually sufficient (say at b = 1/

√
2), we are of course interested in

further extrapolating our results in Nc. These Nc-extrapolations turn out to be sensitive
to the errors on the order of 10−3. This makes the use of NRG-based data, at least for
values of b close to 1, problematic.

6 Quantum mechanical reductions of the sinh-Gordon model

In section 5 we argued that a straightforward implementation of analytical RG improve-
ments is hindered because the small volume expansion of energy levels is not perturbative
with respect to the parameter µShGR

2+2b2 . In this section we take a closer look at the
small-R UV spectrum. Since the energy of oscillators behave as R−1 in the R → 0 limit,
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one might expect that the UV behaviour of the spectrum is dominated by the quantum me-
chanics of the zero mode of the field. Using this quantum mechanical picture, a systematic
expansion for certain energy levels (more precisely, their corresponding scaling functions)
can be developed in terms of 1

ln(µShGR) . Alternatively, one can expand the TBA equations,
yielding a similar expansion, but involving IR parameters (the physical mass, MShG, and
the S-matrix parameter B). Using the mass-coupling relation and expressing B in terms of
the coupling b, we get another expansion in 1

ln(µShGR) , which is however different from the
zero mode expansion in subleading orders. As the energies contain an additional 2πR−1

factor relative to the scaling function, the difference between TBA and zero mode energy
levels eventually diverge for R→ 0 for all b > 0.

In subsection 6.3 we derive an effective potential, partially taking into account the effect
of oscillators. On one side, we analytically reproduce the exact expansion up to O(b12),
confirming that the oscillators are able to explain the differences in the log-expansion.
On the other side, we show that the TSM numerics significantly outperforms even the
numerical solution of the complete effective potential. We then use this fact to provide an
alternative measurement of the IR parameters from TSM, combining UV numerics with
the small-volume expansion of the TBA.

6.1 Semiclassical reflection amplitude

In the semiclassical limit b→ 0 the small volume behavior of energy levels is dominated by
the contribution of the zero mode [47]. For R → 0 the potential walls that the zero mode
sees (i.e. the points where the µShGR

2+2b2 cosh(bφ0) potential exceeds 1) are far from one
another. Then it is sensible to consider first the quantum mechanical problem of a particle
reflecting from a single wall:

Hexp = 2π
R

(
2Π2

0 +Mebϕ0
)

; M = 2πµShG

(
R

2π

)2+2b2

. (6.1)

Introducing the coordinate representation ϕ0 ≡ x, Π0 = −i∂x, it is possible to solve the
Schrödinger equation

Hexpψ = Eψ. (6.2)

Its general solution is given by modified Bessel functions. Requiring that the wave function
vanishes at x → ∞ and evaluating the x → −∞ asymptotics, we can write the relative
phases of the left-moving and right-moving wave as

ψ (x) ' eiPx + e−iPxSsc (P ) ; P =

√
RE

4π , (6.3)

where the semi-classical reflection amplitude is defined as

Ssc (P ) =
(
−
(
R

2π

)−4iPQ (πµShG
b2

)− 2iP
b Γ (1 + 2iP/b)

Γ (1− 2iP/b)

)
; Q = b+ 1

b
. (6.4)

This expression is the semi-classical b→ 0 limit of the Liouville reflection amplitude (2.46).
As the other exponential term is turned on, we can get an approximate quantization con-
dition for the energy levels of the full potential through the quantization condition of the
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Figure 16. Standing waves of the zero mode ruled by the quantization condition eq. (6.5).

wave number P according to the reflection equation (see figure 16):

Ssc (P )2 = 1. (6.5)

Denoting Ssc (P ) = −eiδ(P ) and taking the logarithm, the quantization condition (6.5) reads

δ (P ) = nπ, n ≥ 1 (6.6)

and the branch cuts of δ(P ) are to be chosen such that it is continuous for real P and
δ(0) = 0. The equation for the ground state wave number P0 is then given by

δ (P0) = π . (6.7)

Making a formal expansion of δ (P )

δ (P ) = δ1P + δ3P
3 + δ5P

5 + . . . (6.8)

we can expand the ground state momentum as a function of z = δ−1
1 :

P0 = πz − π3δ3z
4 − π5δ5z

6 + . . . , (6.9)

where the parameter z reads explicitly

z = − 1
4
bγE + 2

b ln
(
πµShG
b2

(
R
2π

)2+2b2
) . (6.10)

Hence, the (semi-classical) ground state energy admits the expansion

E0 = 2π
R
b2π2

(
u2

2 − κSu
3 + 3

2κ
2
Su

4 − 2
(
κ3
S −

π2

3 ζ (3)
)
u5 + . . .

)
;

κS =
(

2γE + ln π

b2

)
;

u =
[
ln
(
µShG

(
R

2π

)2+2b2
)]−1

. (6.11)
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It is important to notice that the terms of this series contain log (µShG)−1 factors. There-
fore, it is not so surprising if a power expansion in µShG around µShG = 0 turns out to
be pathological.

6.2 Quantization condition from the UV limit of TBA

A similar quantization condition exists for the exact energy levels and can be obtained
from the small-volume expansion of the TBA system [7]. In this section we denote the
coupling appearing in TBA by b̄, to emphasize that this parameter is directly related to
the S-matrix parameter B = b̄2

1+b̄2 , and not (immediately) to the parameter b appearing in
the Hamiltonian.

In the small-R limit, the TBA equations decouple into a right- and a left-moving
part. To obtain these equations, one first performs a shift in the rapidity variables
{θ, ϑ} → {θ ± |lnMR| , ϑ± |lnMR|}, leading to a pair of volume-independent equations
up to O (MR) corrections. One then neglects the O (MR) corrections and reverses the
previous rapidity shift. Let us introduce the notation Y± (θ | {ϑ}) = e−ε±(θ|{ϑ}), where
the ± denotes the right- and left-moving solutions. In the following it is advantageous to
construct the so-called Q-functions, defined through the pair of functional relations

Q
(
θ + iπa

2

)
Q
(
θ − iπa

2

)
= Y (θ | {ϑ}) , (6.12)

Q
(
θ + iπ

2

)
Q
(
θ − iπ

2

)
= 1 + Y (θ | {ϑ}) , (6.13)

with a = 1− 2B, where we have suppressed the ϑ-dependence of the Q’s. These functions
can be obtained by taking the logarithm of eqs. (6.12)–(6.13) and (carefully) performing a
Fourier transform. In the UV limit, corresponding to the decoupling of the TBA equations,
we get a pair of functions Q± of the form

lnQ± (θ) = − MR

4 sin πBe
±θ +

∫
dθ′

2π
ln (1 + Y ± (θ′ | {ϑ}))

cosh (θ − θ′) + (source terms) . (6.14)

Note that the source terms and quantization conditions of the TBA system can be under-
stood as a prescription for the zeros of the function 1 + Y . Correspondingly, Q± needs to
have an analogous set of zeroes to be compatible with eq. (6.13). It was shown in [57] that
the Q-functions obtained from the decoupled TBA equations possess the asymptotic form

Q± (θ) ∼
θ→∓∞

cos
[
2PQ

(
b̄
)
θ ±Θ (P )

]
√

sinh
(
2πb̄P

)
sinh

(
2πb̄−1P

) , (6.15)

where P is a real parameter and Θ (P ) is an antisymmetric phase (to be obtained below).
For small volumes, the asymptotic eq. (6.15) is expected to dominate the θ-dependence
over a wide region. The parameter P is quantized by the requirement that Q+ and Q−
corresponds to the same Y -function Y+ = Y−, which is nothing else but the UV limit of
the Y (θ | {ϑ}) = e−ε(θ|{ϑ}).

– 39 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

Let us focus on the zero mode sector defined by restricting the Bethe quantum num-
bers to be Ij = 0, ∀j. Taking into account that ±Q leads to the same Y , we arrive at
the condition

2 Θ (P ) = nπ, n ∈ Z . (6.16)

Due to the antisymmetry of Θ, it is sufficient to restrict to the cases n ≥ 0 (subsequently
we will see that the ground state corresponds to n = 1). In the zero mode sector, energy
levels behave in the UV as

En = 2π
R

(
2P 2

n −
1
12

)
, (6.17)

as can be seen by direct integration (for details, see appendix C of ref. [7]).
It is hard to extract the phase Θ (P ) directly from eq. (6.14). However, as shown in [58],

there exists an ingenious trick to obtain its explicit expression. To this aim, consider the
second-order ODE

− ψ′′ (x) + κ2
(
e2x + e−

2x
b̄2
)
ψ (x) = p2ψ (x) , (6.18)

and the pair of solutions defined by their asymptotical behaviour

ψ− (x) ∼
x→−∞

1√
2κ

exp
(
x

2b̄2
− b̄2κe−

x
b2

)
, (6.19)

ψ+ (x) ∼
x→+∞

1√
2κ

exp
(
−x2 − κe

x
)
. (6.20)

Hence, the Wronskian, W (p), constructed in terms of these solutions

W (p) = ψ+
d

dx
ψ− − ψ−

d

dx
ψ+, (6.21)

satisfies the same set of functional equations as the Q-system, provided that the parameters
κ and p are tuned appropriately. Let us focus on the right-moving part. W (p) can be
evaluated in a small-κ expansion (using the reflection quantization) and a large-κ expansion
(by means of the WKB approximation). It is convenient to parametrize κ as κ = c eθ. Then,
comparing the form of the pseudo-energy obtained from the small-κ expansion (θ → −∞)
to the asymptotic formula eq. (6.15), we can fix

p = 2P
b̄
, (6.22)

while, from the large-κ expansion, we obtain

c = MR

√
π

4 sin πB
2

Γ
(

3−B
2

)
Γ
(

2−B
2

) . (6.23)

Finally, the phase Θ (P ) is obtained by comparing the small-κ expansion to eq. (6.15) and
is given by

e2iΘ(P ) = −b̄
8iP
b̄ ρ−4iPQ(b̄) Γ

(
1 + 2iP b̄

)
Γ
(
1 + 2iP b̄−1

)
Γ
(
1 + 2iP b̄

)
Γ
(
1 + 2iP b̄−1

) , (6.24)
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where
ρ = R

2π
M

4
√
π

Γ
(1−B

2

)
Γ
(2 +B

2

)
. (6.25)

Notice that if we take advantage of the mass-coupling relation and equate b̄ ≡ b, as it
was observed earlier [47, 59], the quantization condition eq. (6.16) can be expressed as

S2
L (P ) = 1 , (6.26)

where SL(P ) is the Liouville reflection amplitude given in eq. (2.46). This is analogous to
the semiclassical formula eq. (6.5) but with the miraculously appearing Liouville reflection
amplitude which replaces the quantum mechanical amplitude Ssc(P ) introduced in sub-
section 6.1. At the same time, SL (P ) reduces to the semiclassical Ssc (P ) in the b → 0
limit. Comparing to the quantization condition (6.6) and assuming continuity of energy
eigenvalues as functions of b, it is then natural to exclude n = 0 from the quantization
condition eq. (6.16). Repeating the UV expansion of the energy levels using the condition
eq. (6.26), we get a modified expansion for the ground state energy

E0 = 2π
R
b2π2

(
u2

2 − κLu
3 + 3

2κ
2
Lu

4 − 2
(
κ3
L −

π2

3
(
1 + b6

)
ζ (3)

)
u5 + . . .

)
;

κL =
(

2
(
1 + b2

)
γE + ln πΓ

(
b2
)

Γ (1− b2)

)
;

u =
[
ln
(
µShG

(
R

2π

)2+2b2
)]−1

. (6.27)

Even though the leading term of this expansion coincides with the semiclassical expan-
sion eq. (6.11), the R−1 factor in the front ensures that a difference in any term of the
u-expansion leads to a singular discrepancy in the R→ 0 limit. This small-volume discrep-
ancy is not trivially accounted for perturbatively. The µShG-expansion introduces terms
that vanish in the R → 0 limit. On the other hand, in the massive scheme of eq. (A.28),
where an expansion in b is natural, the coefficient of the perturbing operator diverges in
the R→ 0 limit.

In the next subsection, we overcome these obstacles by deriving an effective potential
which partially takes into account the corrections appearing in eq. (6.27).

6.3 An effective quantum mechanical potential

In the previous subsections, we compared the small-volume expansion of the ground-state
energy obtained from the zero mode quantum mechanics to the UV expansion of TBA,
and found that they differ by R−1(lnR)−k type terms. It is then an important question
whether the oscillator states neglected in the zero mode calculation can account for these
inverse logarithmic differences, or is this a sign that we are missing additional terms from
the Lagrangian. In any case it is not straightforward to reproduce these terms pertur-
batively. In the following we derive an effective quantum mechanical potential from the
Lagrangian, which provides a more precise description of the UV spectrum of the zero
mode subspace, by partially taking into account the effect of oscillators. This is done by
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means of a Bogoliubov transformation applied to the Hamiltonian, involving the oscillators
only (keeping the zero mode intact). Following the notations of appendix A, we can start
by adding and subtracting an auxiliary quadratic term to the Hamiltonian eq. (3.1),

H(ShG) = H
(0)
cyl + m2

eff
16π

R∫
0

dx : ϕ̃2 (x) :

+ 2µShG

(
R

2π

)2b2 R∫
0

dx : cosh (bϕ (x, 0)) : −m
2
eff

16π

R∫
0

dx : ϕ̃2 (x) :, (6.28)

but considering the zero mode ϕ0 as a free parameter with meff ≡ meff (ϕ0) a function that
depends on it. Upon transforming to the oscillator eigenbasis of the Hamiltonian given by
the first two terms of eq. (6.28), the normalization of the cosh term changes

H(ShG) =
(4π
R

Π2
0 −

π

6R

)
+
∑
n 6=0

ω (meff) a†nan

+ 2µShGRδP

(
R

2π

)2b2

e
2π
R
b2S1(meff ,R) : cosh (bϕ (x, 0)) :meff

− m2
eff

16π

R∫
0

dx : ϕ̃2 (x) :meff dx+ S̃2 (meff , R)

where S1 (m,R) is defined in subsection B.1 and S̃2 (m,R) is defined in eq. (B.8). Here
::meff implies that we are normal ordering w.r.t. to massive (of mass meff) oscillator modes).
The value ofmeff is then given by the requirement that the explicit quadratic term precisely
cancels that of the cosh function. This leads to the transcendental equation

m2
eff (ϕ0) = 16πµShGb

2
(
R

2π

)2b2

e
2π
R
b2S1(meff ,R) cosh bϕ0, ∀ϕ0. (6.29)

The effective Hamiltonian Heff
ZM is then obtained by dropping all higher order oscillator

terms of the cosh interaction. This leads to

Heff
ZM =

(4π
R

Π2
0 −

π

6R

)
+ 2µShGR

(
R

2π

)2b2

e
2π
R
b2S1(meff(ϕ0),R) cosh (bϕ0)

+ S̃2 (meff (ϕ0) , R) , (6.30)

consisting of the contribution of a Bogoliubov ground state energy plus a correction due
to the change of normalization of the cosh term.

Let us now focus on the small volume limit of the spectrum of Heff
ZM . The effective

mass of this Hamiltonian is then approximated by

m2
eff (ϕ0) = 1

R2

(
µShGR

2+2b2 16πb2

(2π)2b2 cosh bϕ0 +O
(
µ2

ShGR
4+4b2

))
, (6.31)
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while the sums S1 and S̃2 admit the small-volume behavior

S1 (m,R) = − 1
m

[
ζ (3)
8π3 (mR)3 +O

(
(mR)5

)]
, (6.32)

S̃2 (m,R) = m

[
ζ (3)
64π3 (mR)3 +O

(
(mR)5

)]
.

Inserting the expansions eq. (6.31) and eq. (6.32) into the effective Hamiltonian eq. (6.30)
and using the coordinate representation, we obtain a Schrödinger equation with the asymp-
totic form

− y′′ (x) + re±xy (x)− ε2e±2xy (x) = c2y (x) , x→ ±∞, (6.33)

where y is a zero mode wave-function. In writing (6.33) we have introduced the notations

x = bϕ0 + ln a, a = µShGR

(
R

2π

)2b2

, r = R

4πb2 ,

ε2 =
(
R

2π

)2
b2ζ (3) , c2 = P 2

b2
. (6.34)

The potential V (x → ±∞) = re±x − ε2e±2x that we obtain in this way does not possess
normalizable eigenfunctions. This is an artefact of expanding the effective mass according
to eq. (6.31). However, for small R, the potential builds up a flat plateau around x = 0,
which is bounded by a large peak on either side. WKB analysis predicts that tunneling
through the peaks can be neglected as long as P � 1

4
√
ζ(3)b2

. In this domain, the amplitude
of reflection from the peaks can be approximated as

S2 (P ) = −
(
R

2π

)−4iPQ (
4πib µShG

√
ζ (3)

)− 2iP
b Γ

(
1 + 2iP

b

)
Γ
(
1− 2iP

b

) Γ
(

1
2 −

iP
b −

i
4b3ζ(3)

)
Γ
(

1
2 + iP

b −
i

4b3ζ(3)

) . (6.35)

For b � 1, the absolute value of S2 (P ) is essentially 1 over a wide interval of P . To now
determine the energy levels, we can once more follow the tactic outlined in subsection 6.1,
writing a quantization condition for the phase shift δeff ≡ −i ln (−S2(P )) = nπ. Expanding
this in powers of P and using (6.3), we find the small-volume expansion:

E0 = 2π
R
b2π2

(
u2

2 −κ2u
3 + 3

2κ
2
2u

4−2
(
κ3

2−
π2

3
(
1+b6

)
ζ (3)+4π2ζ (3)2 b12

)
u5 + . . .

)
,

(6.36)
where

κ2 =
(

2γE + ln π

b2
− 2

3b
6ζ (3)

)
, u =

[
ln
(
µShG

(
R

2π

)2+2b2
)]−1

.

Notice that while the difference between the zero mode expansion eq. (6.11) and the small-
volume expansion eq. (6.27) from the exact UV quantization condition is order O

(
b8
)
, the

difference between eq. (6.36) and eq. (6.27) is instead only order O
(
b12).

– 43 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

0.0 0.2 0.4 0.6 0.8 1.0
-0.0001

0

0.0001

0.0002

0.0003

MShGR

Δ
E

0
/M

S
h

G

(a) b = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.001

0.000

0.001

0.002

0.003

MShGR

Δ
E

0
/M

S
h

G

(b) b = 0.4

0 1 2 3 4 5
-0.01

0.00

0.01

0.02

0.03

MShGR

Δ
E

0
/M

S
h

G

(c) b = 0.6

0 1 2 3 4 5
-0.1

0.0

0.1

0.2

0.3

MShGR

Δ
E

0
/M

S
h

G

(d) b = 0.8

Figure 17. Comparison of the six different approaches available to estimate the UV behavior of
the ground state energy at four different values of b. All data is presented with the exact TBA
values subtracted. Blue dots: Raw (Nc = 12) TSM data; orange dots: extrapolated TSM data;
purple dots: diagonalization of HZM ; dashed green curve: semi-classical reflection quantization;
continuous red curve: Liouville reflection quantization; and red dots: diagonalization of effective
zero mode Hamiltonian, Heff

ZM .

6.4 Numerical performance in the UV

We have now at hand six different ways to estimate the spectrum of the ShG model in the
UV small-R limit: i) raw TSM data; ii) extrapolated TSM data; iii) diagonalization of the
zero mode Hamiltonian, HZM (i.e. eq. (4.3)); iv) reflection quantization using the semi-
classical reflection amplitude; v) reflection quantization using the full Liouville reflection
amplitude; and finally vi) diagonalization of the effective zero mode Hamiltonian, Heff

ZM ,
derived in section 6.3. In this subsection we make an effort to compare the numerical
accuracy of these different approaches. We present our results in figure 17 for four different
values of b. Here the ground state energy corresponding to the Hamiltonian in eq. (6.30)
was obtained numerically and compared to the raw zero mode potential using a real-space
basis of size 16000 — see eq. (4.6). Let us summarise what we learn from these plots.

• The UV limit of TBA is indeed different from that calculated from the zero mode
Hamiltonian HZM alone, apart in the b→ 0 limit.

• In precisely the b→ 0 limit, the validity of the reflection quantization method shrinks

– 44 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

to extremely small volumes. This is intuitive at least in the semiclassical case as the
potential increases relatively mildly around the minimum, so neglecting the overlap
of the two exponentials in the middle is not well-founded.

• For small couplings, the effective potential eq. (6.30) efficiently accounts for the dis-
crepancy between the eigenvalues of HZM and the exact TBA energies.

• As the coupling b is increased, higher order oscillator terms in µShG not included in
eq. (6.30) become significant for arbitrarily small volumes and our expression for the
effective potential leads to inaccurate results.

• In this same regime of large b (but always b < 1), the accuracy of the ground state
energy as obtained from reflection quantization extends to ever larger volumes well
into the IR regime of the model.

• However, TSMs (especially after power-law extrapolation) are able to reproduce the
TBA result surprisingly well, even for larger b. This provides an important confir-
mation of the efficiency of TSMs as applied to the sinh-Gordon model.

6.5 Extracting MShG, E0 and B from UV spectrum

We have shown that the TSM is able to reproduce the UV limit of TBA equations remark-
ably well. It is thus reasonable to take advantage of this fact and to try to extract infinite
volume parameters combining TSM numerics with the quantization condition eq. (6.16).
As the exact quantization condition is expressed in terms of the IR parameters, MShG, E0,
and B, it is possible to fit these parameters using TSM data. To do so we use the lowest
two energy levels (the vacuum and the one-particle state) and two values of the volume
(mR = 0.1 and mR = 0.2), and then we minimize the function

2∑
i,j=1

(
ETBA
i (Rj)− ETSM

i (Rj)
)2
, (6.37)

as function ofMShG, E0 and B. In figure 18 we compare the mass and bulk energy obtained
in this way to the standard TSM methods discussed in section 5. It is worth stressing that
this method produces an estimate for the mass that is an order of magnitude better than the
extrapolated TSM data reported in figure 11 (see panel (a) of figure 18). The determination
of E0 as shown on figure 18(b) provides a precision comparable to the previous analysis.
The real power of the UV method is revealed when we consider the measurement of the
S-matrix parameter B. Here the improvement of the error generally exceeds two orders of
magnitude (see figure 19).

6.6 What have we learned?

In this section we have put the UV behavior of sinh-Gordon theory under scrutiny. After
pointing out the incompleteness of the zero mode in describing the small-volume limit of
the ground state energy for any finite b, we have derived an effective quantum mechanical
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Figure 18. a) Presentation of MShG as computed in section 6.5 (red dots) vs. its determination
from extrapolated TSM data (blue dots). b) The same but for the bulk ground state energy density,
E0. Solid curves shown are the same as in figure 11c-d. Results are presented as differences with
the numerically exact TBA values.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

b

B

(a) S-matrix parameter B.

0.0 0.2 0.4 0.6 0.8

10
-6

10
-5

10
-4

0.001

0.010

b

Δ
B

(b) Difference ∆B.

Figure 19. Determination of S-matrix parameter B. a) Absolute values of B. Blue dots (TSM —
see figure 12b), red dots (method described in section 6.5), solid curve (exact). b) Differences of
determined values of B with exact value.

potential. This effective potential accounts for the above discrepancies up to an O(b12)
error, by partially taking into account the oscillators neglected from the zero mode.

Comparing the zero mode, the effective zero mode, and the TBA-Liouville reflec-
tion quantization results to TSM and exact TBA numerics, we realized that the effective
potential significantly outperforms the zero mode. On the other hand, numerical TSM
(especially after extrapolation) significantly outperforms the effective potential, providing
an even more effective incorporation of the oscillators.

At the same time we noticed that the validity of the reflection quantization approxima-
tion extends to larger volumes as the coupling b is increased. This lead to a more precise,
UV-based measurement of the mass and the S-matrix parameter B, and even provided a
consistency check for the energy density E0.

We emphasize that both the S-matrix parameter B and (up to the mass scale) the
Liouville reflection amplitude are self-dual quantities, which are successfully reproduced
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directly from the Lagrangian, which is not in any sense manifestly self-dual. In this sense,
the ‘self-duality’ of the Lagrangian ShG model (i.e. the dependence of the model on coupling
constant as encoded in the expression as b2/(1+b2)) is confirmed up to the precision of TSM.
This result, together with the partial analytical reproduction of the reflection amplitude,
indicate that the discrepancy in the ground state energy as derived in the UV expansion
coming from the semi-classical and Liouville quantizations is solely due to the effect of
oscillators. Importantly, no extra terms (like cosh(b−1φ)) in the Lagrangian are necessary
to account for it.

However, note that all the above measurements were done below the self-dual point.
As the self-dual point is traversed, the problems arising from the mass-coupling relation
are inherited by the Liouville quantization condition as well. In the next section, we
develop a supra-Borel resummation technique to motivate the power-law fit and to reach
a better understanding of the cutoff dependence in applying TSMs to the ShG model. In
section 8, we actually provide an argument that if the Lagrangian with a finite positive
µShG parameter defines a meaningful theory at all for b > 1, this theory should actually
be massless.

7 Supra-Borel resummation

In section 5.2.1 we demonstrated that the leading order corrections, δE(Nc,Λ), to the
energies, E(Nc), obtained at a given cutoff, Nc, that arise from taking into account states
above the cutoff up to a new cutoff Λ > Nc can be expressed as a perturbative series in
µShG of the form

δE(Nc,Λ) =
∞∑
n=2

anµ
n
ShG(Λ2(n2−n)b2−2n+2 −N2(n2−n)b2−2n+2

c ) + less singular terms, (7.1)

where an is constant independent of Nc,Λ.
The first thing to note about this series is that no matter how small b is, terms in the

series for sufficiently large n will diverge as Λ→∞. The second thing to stress about this
quantity is that δE(Nc,Λ) is ultimately a finite quantity with a well-defined limit as n→∞
for fixed Λ. This follows as all UV singularities in the theory, at least for b < 1, have been
removed through the normal ordering of vertex operators. The divergences that one sees in
the perturbative representation of δE(Nc,Λ) found in eq. (7.1) are not reflective of a need
to add additional counterterms to the theory in order to make it UV finite. The last point
is evident by simply choosing a Λ slightly larger than Nc and performing TSM numerics up
to the cutoff Λ. In this case we get the exact (and finite) δEn(Nc,Λ) = En(Λ)− En(Nc).

Now in other models, such counterterms can be a necessity. For example, in the sine-
Gordon model, when β2 > 1/2 (βBKT = 1), a counterterm proportional to the identity
operator is required for the finiteness as Λ → ∞. Here it is important to emphasize
that the need for this counterterm is readily observable in TSM results for sine-Gordon.
When one studies the sine-Gordon model for β2 > 1/2, one finds that the ground state
energy computed by TSM has a marked cutoff dependence in Nc. This is not the case
for sinh-Gordon. In all of our TSM studies for the b < 1 ShG model, we observe no such
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cutoff dependence, giving numerical ‘proof’ to the fact that indeed no new counterterms
are required in this theory.

So then, what are we to make of divergences that appear in each of the terms of
eq. (7.1)? These divergences are, in fact, an artefact. They are a result of computing
δE(Nc,Λ) by doing perturbation theory in µShG. Because the µShG cosh(bφ) potential is
(strongly) unbounded from below if µShG < 0, the radius of convergence of any perturbation
theory in µShG is 0. This is reflected in the TBA energy in µShG being a series, not in µShG
but in 1

logµShG
. It is thus not surprising to find an ill-defined perturbative series around

µShG = 0, even though the TBA energies are finite. Thus for any Nc, this series must be
treated as asymptotic. The question then becomes whether it can be resummed. We know
E(Nc) itself is finite. But can we resum the series and explicitly demonstrate this?4

Now this series is not Borel resummable in the standard sense, namely the coefficients
at order n are diverging more quickly than n! (in fact, they are diverging as e2b2 log(Λ)(n2−n)).
We will show in this section that nonetheless it is possible to resum this series in a meaning-
ful way for any Nc < Λ and obtain a finite result. From this resummation we will obtain
some understanding of the slow convergence of TSM results in Nc as well as a partial
justification of the power law scaling that we observed in section 5.

Before doing so we consider a toy example. It is a bit unusual from a standard field
theory perspective to perform a resummation of a perturbative series at fixed cutoff, Nc.
Normally one would take the cutoff to ∞ first and then perform the resummation. But,
again, here the theory as is is UV finite and, moreover, our purpose here is to connect to
our TSM results which are always computed at fixed Nc. The toy example with which we
will discuss in the next section shows that there are simple functions which are finite, but
whose perturbative expansions suffer from the same behavior in the presence of a cutoff as
our quantity of interest, δE(Nc,Λ).

7.1 Toy example

Here we show that it is easy to find functions for which when one performs a perturbative
expansion about a non-analytic point, one can obtain pathological behavior in a cutoff used
to regulate each term in the expansion. Consider the function, f(µ, ε), defined as

f(µ, ε) =
∫ 1

ε
dx(x+ µ)

1
b2
−1dx. (7.2)

Here ε is a regulator which if set to zero (analogous to taking Nc →∞), leaves f finite, i.e.

f(µ, 0) = b2((1 + µ)
1
b2 − µ

1
b2 ). (7.3)

This function is clearly well behaved for any µ ≥ 0, b > 0. However if we now naively
expand about µ = 0, we have

f(µ, ε) =
∞∑
k=0

µk
(
b−2 − 1

k

)∫ 1

ε
xb
−2−1−k =

∞∑
k=0

µk
(
b−2 − 1

k

)
1

k − b−2 (εb−2−k − 1). (7.4)

4A priori it is possible that not only the leading divergences, but also all the subleading ones (see
eq. (5.29)) must be taken into account to obtain a finite resummation. We assume that this is not the case,
and that the leading order differences separately sum up to a finite correction.
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We see that while the original form of the function f(µ, ε) was finite as ε→ 0, the expansion
in the coupling µ leads to a series where terms beyond a certain order in k are all divergent
as the cutoff ε goes to 0. This series is thus asymptotic. The k-th order term here goes
as ek log(1/ε) (so more slowly than k!) and here at least the series at any fixed ε should be
resummable via standard Borel resummation techniques. Now, with this toy example in
mind, let us turn to the real problem at hand.

7.2 Minimal resummation

In the following, we are going to take a slightly different approach. Instead of considering
eq. (7.1) (with Nc fixed and Λ → ∞), we are going to employ a perturbative expansion
in µShG of the ground state energy, E(Nc) (with Nc → ∞), that takes into account all
contributions up to cutoff Nc.5 Here the advantage will be that we will have a specific form
for the an’s of eq. (7.1), the coefficients at each order of the expansion that are independent
of Nc. This expansion, as we demonstrate in appendix C using certain assumptions, has
the following form:

E(z = µ̃ShGN
−2(1+b2)
c ) = −N

2
c

R

∞∑
n=1

anz
ne

n2
16γ ; γ ≡ 1

16(2b2 log(Nc) + log(c)) , (7.5)

where µ̃ShG = µShG
(2π
R

)−2−2b2 is the dimensionless ShG coupling and an, c are dimension-
less constants independent of R,Nc.

Despite this series not being Borel resummable, it admits what we call a supra-Borel
resummability, something G. Hardy in his classical treatise on divergent series [60], termed
resummation via moment constant methods. In this procedure, one supposes that one has
the asymptotic series S(z) =

∑
k akz

k. In order to resum it, one chooses a function ρ and
then defines its moments on R+ as

rk =
∫ ∞

0
tkρ(t)dt. (7.6)

The series, S(z), is then said to be r − ρ resummable if

B(t) =
∑
k

ak
rk
tk,

converges in some neighbourhood of t = 0 and B(t) has an analytic continuation to a
neighbourhood of the positive real axis. If the integral,

g(z) =
∫ ∞

0
B(zt)ρ(t)dt,

is convergent for a z 6= 0, then the function g(z) exists, is analytic in some domain −∞ <

Re(log(z)) < c0, and has the asymptotic Taylor series S(z). S(z) can then be identified as
the resummation of S(z) in this same domain.

5Of course δE(Nc,Λ) can be written here as E(Λ)− E(Nc).
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For the case at hand we choose the function ρ(t) as

ρ(t) = 1
t
e−4γ log2(t), (7.7)

with moments
µk =

√
π

4γ e
k2
16γ . (7.8)

As discussed in ref. [61] this choice arises generically in problems with exponential poten-
tials. Ref. [61] discusses the technical conditions needed for resummation for this choice
of ρ(t). Assuming for the moment that they are met, we can resum our expression for the
ground state energy and rewrite it in the form:

E(Nc) = a1µ̃

R
− N2

c

R
√

4γ

∫ ∞
−∞

dxe−x
2
B(µ̃N−(2+2b2)

c e
− x

2√γ );

B(t) =
(4γ
π

)1/2 ∞∑
n=2

ant
n. (7.9)

In appendix C, we show that in fact an = (−α)n with α > 0. Assuming this, we can then
write B(t) as

B(t) =
(4γ
π

)1/2 α2t2

1 + αt
, (7.10)

and so is analytic along all of the positive real axis.
Now that we have resummed our asymptotic series, let us investigate its properties as

a function of Nc. It is not a priori obvious that this resummation will necessarily lead to
a sensible result, i.e. something that is finite as Nc → ∞. But nonetheless it does. To
investigate the asymptotics, we write the integral expression for E in a suggestive form:

E = a1µ̃ShG
R

− µ̃ShGαc

R
√
π

∫ ∞
−∞

dx
e−x

2

1 + α−1eβ(x−µB) ;

β ≡ 1
2√γ ;

µB ≡
1

4√γ + 2√γ log(µ̃ShGN
−2−2b2
c ). (7.11)

We can now do a Sommerfeld-type expansion and obtain asymptotics in large Nc of
the form:

E(Nc) = a1µ̃ShG

R
− αµ̃ShGc

R
√
π

[∫ µB

−∞
dxe−x

2 + 1
β

∫ ∞
0

dye−µ
2
B

( 1
1+α−1ey

− 1
1+αey

)
+O

(
e−µ

2
B

β2

)]

=


a1µ̃ShG

R
− αµ̃ShGc

R
√
π
e−µ

2
B

(
1

2|µB |
+ 1
β

logα
)

+C e−µ
2
B

Rβ2 , b2< 1;
a1µ̃ShG

R
− αµ̃ShGc

R
√
π

(√
π− e−µ

2
B

2|µB |
+ e−µ

2
B

β
logα

)
+C ′ e

−µ2
B

Rβ2 , b2> 1,
(7.12)

where C,C ′ are constants. We note that in the large-Nc limit, the Borel ‘chemical potential’,
µB, can be written as

µB ≈
√

logNc(b2 − 1)√
2b

, (7.13)
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Figure 20. Power law exponents as a function of b as determined from TSM extrapolation (blue
dots) vs those predicted by eq. (7.14) (solid orange curve) and the exponent of the leading naïve
RG correction eq. (5.26).

and so |µB| in this limit is invariant under b → 1/b. We also note that as Nc → ∞, the
resummed part (i.e. involving terms n ≥ 2) of E vanishes if b < 1, but tends to a finite
constant if b > 1.

We thus expect that for large Nc that

E(Nc) ∼ N−νc , ν = (b2 − 1)2

2b2 . (7.14)

We compare in figure 20 the exponents predicted by this result to those determined from
extrapolating TSM data (see figure 8 in section 5). We see that as the self-dual point is
approached, the exponent predicted by the asymptotics describes approximately the trend
observed from power law fits of the data. It however fails to describe the fitted exponents at
small b. Instead these are described well by the exponent coming from the first perturbative
correction to the TSM data (see eq. (5.26)).

7.3 General supra-Borel approximates

In the previous section, we considered the resummation of a perturbative expansion of
the ground state energy. This expansion, discussed in appendix C, and given in eq. (7.5),
makes certain approximations to the evaluation of the constants c and an. How important
are these approximations to the final result? We show here that in fact the final answer is
sensitive to the exact form of these constants.

We begin by developing a simple constraint on the resummation arising from the
behaviour of the energy as a function of Nc. Let us call the energy of a state without
truncation E∞. Then we can write

E∞ = E(Nc) + δE(Nc,∞), (7.15)

i.e. if δE(Nc,∞) is, again, the correction to the energy due to including all states above
the truncation Nc. This means that the fitting form for the TSM energies is

E(Nc) = E∞ − δE(Nc,∞). (7.16)
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In general we expect E(Nc) approaches E∞ from above, a consequence of the variational
principle. So this means δE(Nc,∞) must be negative. For b > 1 we see from asymptotics,
i.e. eq. (7.12), that this is indeed the case. But for b < 1 it is not, and we thus conclude
that the simple form computed for E(Nc) in eqs. (7.5) cannot strictly be correct. For the
purpose of resummation, we require more precise forms for an’s and the constant c.

In general it is difficult to compute to high precision the an’s and so derive an exact
form to the supra-Borel transform that we presented in eq. (7.10). One way to resolve this
problem heuristically is to suppose the Borel transform has a more general form than in
eq. (7.10). The simplest possibility is a Padé form:

BM (t) =
∑M
i=1 rit

i+1

1 +
∑M
i=1 sit

i
, M > 1. (7.17)

We will only look at forms of B(t) whose large t asymptotics are B(t → ∞) ∝ t as this
form leads to a naive cancellation of the powers of Nc in eq. (7.9). With this more general
form, we can arrange as we will see in the next section, through an appropriate choice of
couplings, that

δE(Nc,∞) < 0, (7.18)

despite the overall minus sign. To ensure this, we allow the ri’s to be of either sign and
so that we have no poles on the positive real axis, we assume the si’s to be positive. So,
for example, with M = 2, we take r1 > 0, r2 < 0, and s1,2 > 0. In principle these free
parameters can be fixed by carefully computing the an’s to finite order.

In our discussion here we have only treated Borel approximates that have no poles
along the positive real axis. Whether this is actually correct is open to question. We
know that the path integral describing the sinh-Gordon model will have complex saddle
points. This suggests that a correct Borel approximate, B(t), might then have poles in
R+. In order to make sense of such an occurence (i.e. in order to interpret the integral of
eq. (7.9)) would require the use of resurgence theory and the associated identification of
Lefshetz thimbles related to complex saddle points [62–65]. While this possibility is very
interesting, it is beyond the scope of the current work. We however plan to pursue it in
the future.

7.4 Fits and discussion of limitations

In this section we look at select examples where we fit as a function of Nc our TSM data
to the functional forms suggested by the Borel resummations. We compare these fits to
a simpler power law fit. We look at two fits suggested by the Borel resummations. In
the first we look at a fit that incorporates only the asymptotics suggested by the minimal
resummation discussed in section 7.2:

E(Nc) = E∞ +A
e−µ

2
ShG(Nc,µ̃ShG,b,c)

|µShG(Nc, µ̃ShG, b, c)|
. (7.19)
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In the second we look at a fit to a form involving an M = 2 supra-Borel transform

E(N) = E∞ +N2
c

∫ ∞
−∞

e−x
2
B2
(
µ̃ShGN

−(2+2b2)
c e

− x
2√γ
)

;

B2(t) = r1t
2 + r2t

3

1 + s1t+ s2t2
. (7.20)

Finally we consider a power law fit:

E(Nc) = E∞ +AN−νc . (7.21)

The latter two forms are generically applicable a priori. However the form in eq. (7.19) is
not. The Borel resummation ‘chemical potential’, µB, has a zero, Nc0 as a function of Nc.
Thus if we are to use this form to fit our numerical TSM data we need to be sure our data
runs over values of Nc > Nc0. Nc0 is given by

Nc0 = (c2µ̃ShG)1/(2−2b2). (7.22)

Because µ̃ShG = R2+2b2µShG, we see that at large R the regime where the Borel asymptotic
form is expected to apply recedes to ever larger Nc. We note in general that if we are in a
regime where the Borel asymptotics applies then the exponent from power law fit should
approximate that predicted by eq. (7.13). We will see in the examples below for larger
values of b that this does not happen.

In figure 21 we show the results of these fits for two different values of b: b = 0.778 and
b = 0.919. On the left hand side of the figure (panels a and c), we show the fits over the
existing range of the data (for b = 0.778, 5 ≤ Nc ≤ 20, and for b = 0.919, 6 ≤ Nc ≤ 14) on
a linear scale. We see that in all three cases (Borel asymptotic, eq. (7.19), M = 2 Borel,
eq. (7.20), and power law, eq. (7.21), the fits appear identical. What is different however
is the value of E∞ inferred from the fits. These differ markedly between the fits. We see in
comparison to the exact value (as determined from the TBA), the power law extrapolation,
E∞,power law, is greater than the exact value (i.e. there is an under extrapolation) and the
Borel asymptotic fit leads to a value E∞,Borel asymp. that is less than the exact value (i.e.
there is an over extrapolation). The M = 2 Borel fit for these examples seems to perform
best (see below, however), leading to an asymptotic value, E∞,Borel M=2, that is closest
to the exact value. One conclusion that we draw from this is that the values of Nc at
which our data is computed are decidedly not in the large-Nc asymptotic regime. Our
data does obey a power law form (as our fits indicate), but this power law is different from
the one derived from the Borel asymptotics (i.e. eq. (7.13)). In particular the power law
being obeyed by the data at Nc in the range (10, 20) is greater than the one indicated by
eq. (7.13). This is consistent with our finding that the power law fit under extrapolates
and leads to a value of E∞ that is too large while the Borel asymptotics do the opposite.
That the M = 2 Borel form does better is thus not surprising. However this should not be
taken (at all) as the final word of which fitting form to use. Certainly we have made no
real attempt to explore the space of supra-Borel transforms, B(t), and leave this to later
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(a) b = 0.778, R = 0.2: Linear scale in Nc.
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(b) b = 0.778, R = 0.2: Log scale in Nc.

6 8 10 12 14

N
c

0.51

0.52

0.53

E
g
s

TSM data
Fit from Borel asymptotics

Fit from Borel M=2
Fit from power law

E
exact

 = 0.356163

E
∞, Borel

 = 0.264 

E
∞, Borel M=2

 = 0.310

E
∞, power law

 = 0.419

(c) b = 0.919, R = 3: Linear scale in Nc.
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Figure 21. Top panels: Borel and power-law fits for R = 0.2, b = 0.778. The exponent ν given in
eq. (7.21) of the power law fit is 0.38. This can be compared with exponent predicted by the Borel
asymptotics, ν = 0.13. Bottom panels: Borel and power law fits for R = 3, b = 0.919. The exponent
(eq. (7.21)) of the power law fit is ν = 0.215 while that expected from the Borel asymptotics is
ν ≈ 0.014.

work. As we have already stated, a complete analysis will require the incorporation of any
putative complex saddle points of the path integral for the ShG model and the attendant
use of resurgence theory [64, 65].

To give the reader a better picture of the extrapolations that are being performed by
the fits, we have also plotted the fits on a semi-log scale (the right hand side of figure 21).
Here we explicitly show the extrapolations to large Nc, Nc ∼ e20. We see that the different
fits only begin to diverge from one another for Nc far in excess of our ability to perform
numerical TSM computations. We also see the necessity for the extrapolations. Even the
most rapidly converging of the fits, the power law fits, only see convergence for Nc � e10

at the values of b that we are considering in figure 21. We do note that the convergence at
b = 0.778 is much more rapid than at b = 0.919, something we already expected from the
power law inferred from the Borel asymptotics eq. (7.13).
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b R Borel Asymptotic Borel M = 2 Power Law Exact Value
0.778 0.2 −1.8277± 0.0001 −1.8233± 0.0004 −1.825± 0.002 −1.82399
0.919 0.3 −1.1490± 0.0006 −1.113± 0.007 −1.1204± 0.0008 −1.14084
0.919 3.0 0.269± 0.004 0.34± 0.03 0.419± 0.001 0.35613

Table 1. Fits including an uncertainty analysis. All data is for µShG = 0.1.

In the fits described in figure 21, we made no attempt to assign an uncertainty to our
fits. In table 1 we attempt to do this. For each of the three different forms, we perform four
fits. Each of these four fits is over different subsets of our numerical data. The different
subsets are obtained by dropping data points for the lowest values of Nc at which we have
numerical data. For the b = 0.778 fit, the subsets are formed from data at values of Nc

corresponding to the sets {5, · · · , 20}, {6, · · · , 20}, {7, · · · , 20}, and {8, · · · , 20}, while for
the b = 0.919 fits the Nc-subsets are given by {6, · · · , 14}, {7, · · · , 14}, {8, · · · , 14}, and
{9, · · · , 14}. Having done these four fits, we take the average and standard deviation of
the obtained values of E∞ and report these in table 1. In this table we provide an analysis
for one more pair of (b, R), (0.919, 3.0), beyond those considered in figure 21.

7.5 What have we learned?

We have shown in this section that the divergences observed in the perturbative corrections
to the TSM can be made sense of. In particular, we have shown that these corrections can
be both computed at all orders in the coupling µShG and resummed with a resulting finite
value via a supra-Borel procedure. We note that the ShG model is not the only theory
where resummation is needed. The ability to do so, for example, might be useful for studies
of the Φ4 (and other polynomial) theories. To date at least partial (useful) resummations
of the expansion eq. (5.18) are available and tested in the context of 1 + 1d Φ4 theory in
refs. [29, 30].

We have shown the functional form of the resummed corrections gives us important
insights into the large Nc asymptotics of the TSM. It provides a partial explanation at
values of b close to the self-dual point for the power law fit that we have observed (see
figure 20). It also provides a guide to how to extrapolate TSM results to Nc = ∞. In
the section we considered two fitting functions suggested by the supra-Borel resummation
to use with our TSM data. In the first, we employed only the asymptotic form (valid
for large Nc) suggested by the resummation. In the second we used a Padé form for
the Borel approximant. Unsurprisingly the Padé form outperformed the asymptotic form.
The asymptotic form is likely only really appropriate for values of Nc beyond that we have
performed TSM computations.

In presenting this resummation, we have really only scratched the surface. We are
fairly certain that there are more appropriate Borel approximates than used here that
are better tailored to the properties of the ShG model. We view this an important open
problem presented by this work.
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8 Form factor truncated spectrum method

In the previous sections we have focused on numerical TSM data arrived at from a com-
putational basis based on a non-compact free massless boson and its zero mode. We have
discussed in detail the strong dependence of the data from the cutoff, Ec, in particular
approaching the self-dual point b = 1. In light of these results, it is natural to ask the
following question:

Is there a starting point H0 for the TSM much ‘closer’ to the model of interest?

In this context, ‘closer’ means having a set of eigenstates such that TSMs is better suited to
approximate the spectrum of the perturbed theory. For example, instead of separating the
zero mode, we might have started with the Hamiltonian (A.28) and so used a computation
basis built on a standard massive Fock basis. Having considered this, a more radical
possibility suggests itself. This, however, comes at the cost of abandoning the comfort
provided by the free nature of H0.

8.1 Using the ShG basis as a computational basis

The main idea is as follows. Our target is a ShG model at coupling b1 and we choose as our
starting point a ShG model at a different coupling b0, setting H0 = H

(shG)
b0

. While such a
starting point does suffer from the critique that we are using as input information that is
itself non-trivial and is meant to be, in part, verified by our TSM studies, we believe that
there are good reasons to explore this path:

• As we will see soon, this method provides a set of a highly nontrivial self-consistency
checks.

• It provides useful insights regarding the validity of the exact VEV formulae in certain
domains.

• It is a non-traditional starting point for the application of the TSM to interacting
massive field theories6 and insight gained here will be useful for the study of defor-
mations of other massive integrable field theories.

In the approach taking in here, we write the Hamiltonian as:

H = H
(shG)
b0

+H1 , (8.1)

where the solvable piece is given by

H
(shG)
b0

= H0 + 2µ0

∫ R

0
dx cosh(b0φ), (8.2)

where H0 is the Hamiltonian of the non-compact c = 1 boson, while the perturbation is
given by

H1 =
∫ R

0
dx
(
2µ1 cosh(b1φ(x))− 2µ0 cosh(b0φ(x))

)
. (8.3)

6Certainly the TSM has a long history of employing an H0 that is interacting. However H0 in such cases
is an interacting massless CFT [20, 22, 31, 34, 35, 53, 66–68].
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In order to proceed with the diagonalization of the Hamiltonian (8.1) on a cylinder of
finite circumference R we need two highly nontrivial sets of data:

• Finite volume energy levels of H(shG)
b0

;

• Finite volume matrix elements of H1 between eigenstates of H(shG)
b0

.

Fortunately, both pieces of data are available in the ShG model (as well as a number of
other integrable models), at least up to exponentially small corrections in the volume.
Indeed, according to Lüscher’s principle, all information about finite volume quantities are
encoded in infinite volume data, like the physical mass M and the S-matrix. Indeed, the
exact energies of all finite volume eigenstates can be computed efficiently from the excited-
state thermodynamical Bethe ansatz (see section 2.4). Formulae for the matrix elements,
at least up to exponential small corrections [42, 69], are also available. In the special
case of diagonal matrix elements, one can use a generalization of the Leclair-Mussardo
formula [70] to systematically compute exponential corrections. In the following, we are
going work mostly in the regime 5 ≤ MShGR ≤ 15, where exponential corrections should
be small and can be neglected.

8.1.1 Finite volume energies

We have already discussed in section 2.4 the excited state TBA that provides the finite vol-
ume energies of H0. However we revisit this discussion to establish notation that is needed
to discuss the finite volume matrix elements. The finite energy eigenstates can be described
by a finite number n of particles with momenta pj = M sinh θj quantized due to finite vol-
ume R. We can assign an integer quantum number Ij to each momenta. The Bethe-Yang
equations essentially impose the one-valuedness of the quantum mechanical multi-particle
wave-function in presence of the purely elastic two-particle scattering S (θ) = eiδ(θ)

Qj ({θ}) ≡ pjL+
n∑
k 6=j

δ (θj − θk) = 2πIj +O
(
e−ML

)
, j ∈ {1, . . . , n} ;

δ(θ) = 2 tan−1
( sinh(θ)

sin(πB)

)
. (8.4)

A finite volume state, |{Ii}ki=1〉, is given by the set Ij , j ∈ {1, . . . , n}. The system eq. (8.4)
is solved for the set of rapidities θj giving the total energy and momentum of the state as:

E =
n∑
j=1

M cosh θj , P =
n∑
j=1

M sinh θj (8.5)

8.1.2 Finite volume matrix elements

What we have not considered so far are matrix elements in finite volume. Here the Pozsgay-
Takács formulae [71, 72] come to our aid. For completely non-diagonal form factors, where
all rapidities are pairwise different between the bra and the ket states, the formula expresses
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the finite volume form factors

〈{Ii}ki=1|O(x, 0)|{Ĩj}lj=1〉L =
e
iM(
∑l

j=1 sinhϑj−
∑k

i=1 sinh θi)x〈{θi}ki=1|O(0, 0)|{ϑj}lj=1〉√
ρk({θi})ρl({ϑj})N ∗k ({θi})Nl({ϑj})

+O(e−ML) (8.6)

in terms of infinite volume form factors: 〈{θi}ki=1|O(0, 0)|{ϑj}lj=1〉 [2, 3] (see appendix D).
Here Nk is defined as

Nk({θi}) =

√√√√ k∏
r=1

k∏
s=r+1

S(θr − θs), (8.7)

while ρk is given in terms of a Gaudin determinant:

ρk({θi}i=1) = detRpq, Rpq = ∂Qq
∂θp

. (8.8)

The normalization coefficients of (8.7) make all matrix elements (8.6) real (apart from the
eiMx factors).

We still need to treat the case of when rapidities in matrix elements happen to coincide.
In such a case, the infinite volume form factors have singularities that require regulation.
This requires then significantly more complicated formulae than eq. (8.6). Coinciding
rapidities happen in two different circumstances. In the first the bra and ket states are
the same state — so called diagonal form factor). The second possibility is that the two
different states have an odd number of particles 2n + 1 and 2m + 1, respectively, with
quantization numbers

{Ij}nj=1 ∪ {0} ∪ {−Ij}nj=1, and {Ĩj}mj=1 ∪ {0} ∪ {−Ĩj}mj=1.

In the latter case, a particle of exactly zero momentum is present in both states. There
is, however, a simple trick [73] to circumvent the complications in numerical computations
by exploiting the factorization property of exponential operators. Introducing an auxiliary
particle with rapidity θΛ →∞,

〈θΛ, {θi}ki=1|O|{ϑj}lj=1〉
〈O〉

→
〈θΛ|O|vac〉〈{θi}ki=1|O|{ϑj}lj=1〉

〈O〉2
(8.9)

and
ρk+1(θΛ, {θi})→ ρ1(θΛ)ρk({θi}). (8.10)

This permits us to isolate the matrix element of interest even if it contains coinciding
rapidities. With all {Ii} and {Ĩj} finite,

lim
Λ→∞

〈{Ii}ki=1 ∪ {Λ}|O(0, 0)|{Ĩj}lj=1〉L = 〈Λ|O|vac〉L
〈O〉L

〈{Ii}ki=1|O(0, 0)|{Ĩj}lj=1〉L (8.11)

where Λ is the momentum quantization number of the auxiliary particle. Choosing instead
a large but finite Λ, the equality is not exact, but the error can be made arbitrarily small
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by increasing Λ. In practice we need to solve the set of BYE (8.4) twice: once for k + 1
particles involving the extra quantization number Λ, and once for the quantization number
set {Ĩj}lj=1. Thus we obtain rapidities of the form θi = ϑi+εi, where εi are small corrections
depending on all the Ii and Λ. These are then put back into the left hand side of eq. (8.11),
yielding the sought for matrix element.

8.2 Sanity checks

The setup of the TSM in the basis of the ShG model itself allows us to make some non-
trivial consistency checks. The first such check is offered by an infinitesimal change in the
coupling constant b1 = b0 + δb.

8.2.1 Comparison with form factor perturbation theory

Denote µ0 = µ(b) and µ1 = µ(b + δb). Let us calculate the first order correction of the
mass of the particle in form factor perturbation theory [74]. It is convenient to keep the
system in a finite (very large) volume R. Here the volume factors from spatial integration
and the Hilbert state norms cancel. The first perturbative correction to the mass is then:

δMShG = 〈MShG|H1|MShG〉 − 〈0|H1|0〉 , (8.12)

where |MShG〉 denotes the one-particle state of zero momentum and |0〉 is the vacuum. The
diagonal form factor contains a disconnected term which be cancelled by a similar term
arising from the VEV of eq. (8.12):

〈MShG|H1|MShG〉 = 〈0|H1|0〉

+ 2
MShG

(
−µ(b)〈ebϕ〉F exp(bϕ)

2 (iπ, 0) + µ (b+ δb) 〈e(b+δb)ϕ〉F exp((b+δb)ϕ)
2 (iπ, 0)

)
.

Inserting the explicit form of the two-particle form factor calculated using eq. (D.4), we
arrive at the relation:

MShG(b)[MShG(b+ δb)−MShG(b)] = 8
(
−µ(b)〈ebϕ〉 sin(πB) (8.13)

+ µ(b+ δb)〈e(b+δb)ϕ〉
sin2((1 + δb

b )πB)
sin(πB)

)
,

where the vacuum expectation values are given by the FLZZ formula (2.33). Therefore, for
an infinitesimal δb, we can write down a differential equation for the mass shift equation

∂[MShG(b)2]
∂b

= 16µ(b)〈ebϕ〉(δ〈e
(b+δb)ϕ〉
〈ebϕ〉

sin(πB) + 2πB
b

cos(πB) + ∂(log µ)
∂b

sin(πB))

(8.14)

where
δ〈e(b+δb)ϕ〉
〈ebϕ〉

= −2b (1−B) ln
(
−µ (b)πΓ

(
1 + b2

)
Γ (−b2)

)

+
∞∫
0

dt

[
−b sinh

(
4b2t

)
sinh(b2t) sinh t cosh((1 + b2)t) + 4b

t
e−2t

]
. (8.15)
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The physical mass MShG, given by the mass-formula (2.26), numerically agrees with the
result of integrating equation (8.14). In the special case limb→0 µ ∝ b−2, we also have
to explicitly specify MShG(b = 0). The integral appearing in the r.h.s. of (8.15) can be
evaluated explicitly in terms of a digamma function Ψ(z):

∞∫
0

dt

[
−b sinh(4b2t)

sinh(b2t) sinh t cosh((1 + b2)t) + 4b
t
e−2t

]
= −2b

{ 1
B
−Ψ(1− b2)−Ψ(1 + b2)

− 1−B
2

(
Ψ
(1

2 −
B

2

)
−Ψ

(
B

2

)
+ Ψ

(
B − 1

2

)
−Ψ

(
1− B

2

))}
.

(8.16)

A somewhat tedious but straightforward calculation shows that substituting eq. (8.15)
into the r.h.s. of eq. (8.14) indeed agrees with the derivative of the exact mass formula
(eq. (2.26)), once squared.

8.2.2 Massive boson limit

In the second check, we fix µ(bi) = m2

2b2i
and take the limit b0 → 0. Here we want to show

that we then obtain the Hamiltonian in the massive boson basis. In particular in this limit
all matrix elements of the perturbation vertex operators need to approach the limit:

〈{Ii}ki=1| : eaϕ(0, 0) : |{Ĩj}lj=1〉L →∏
k

1√
nk!mk!


min(nk,mk)∑
n1k=0

n1k!
(
nk
n1k

)(
mk

n1k

)(
a√

2Lωk

)nk+mk−2n1k

 (8.17)

with a = ±b1 and the quantities on the l.h.s. are understood with respect to theory b0. In
formula eq. (8.17) we denoted the number of particles with quantum number k as nk in
the bra vector and mk in the ket vector. Furthermore, matrix elements of vertex operators
with a = ±b0 need to approach those of the operator −m2

2 : ϕ2 :.
These relations are highly nontrivial, especially for diagonal matrix elements, but we

have confirmed numerically their validity on a large number of matrix elements. Note that
the b0 → 0 limit of the form factors is numerically unstable and so the precision often needs
to be increased from the usual machine (double) precision.

8.3 Implementation and results

Due to the high numerical precision needed, especially in taking diagonal limits, we opted
for an implementation in Mathematica. The truncated basis was selected with two cutoffs, a
momentum cutoff kmax and a limit on the number of particles Nmax. Figure 22 summarizes
the numerical results obtained starting from theories with four different values of b0.

To facilitate comparison of different bases, we introduce the following double cutoff. We
limit the maximum number of particles Nmax as well as the sum of Bethe-Yang quantization
numbers of each sign:

∑
j:Ij>0 Ij <= kmax. Let us remark that enlarging the basis size

through the increase of kmax only is computationally easier than increasing Nmax. This
is because the latter results in having to evaluate much more complicated expressions
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Figure 22. The mass-coupling relation as measured using H0 = HShG
b0

at four different values of
b0 (two in the left panel and two in the right). The mass of the unperturbed theory at b0 is plotted
as a large unfilled circle while the masses derived at neighbouring values of b1 are shown as dots of
the same color.
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Figure 23. Cutoff dependence of ground state energy at coupling b1, volume R = 6, starting
from different b0 couplings. Blue, orange, green, red, purple and brown symbols correspond to
cutoffs Nmax = 2, 4, 6, 8, 10, 12, respectively. Results from the free massive boson basis (b0 = 0) are
distinguished with x-marks. µ0 = 1

2b2
0
, µ1 = 1

2b2
1
.

for the matrix elements. However, from numerical tests we deduce that the majority of
cutoff dependence is found when changing Nmax and kmax simultaneously. Therefore in the
following we fix Nmax = kmax.

In figure 22 we present sample results for the mass gap, starting from four different
basis theories (denoted by unfilled circles). Computations were done with a raw cutoff
Nmax = 6. This resulted in Hilbert spaces of dimension 203 in the even particle number
sector and 124 in the odd. Numerics were performed at MShGR = 6 with MShG being the
physical mass of the unperturbed (basis) theory.

In figure 23 we follow the precision of results as the TSM basis is changed from the free
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massive boson towards the self-dual point. Here we show explicitly the cutoff dependence
of the ground state energy at R = 6. The b0 = 0 points result from using the free
massive Hamiltonian (A.28). The largest cutoff considered for the form factor approach is
Nmax = 8, corresponding to an 1171 dimensional (even sector) truncated Hamiltonian. In
the free massive basis, we also show the point corresponding to Nmax = 10, 12, with basis
sizes of 5830 and 25488, respectively. Not surprisingly, the result corresponding to any fixed
cutoff improves as we start closer to b1. However, it is striking that as we approximate b0
to b1, the power-law exponent of the cutoff dependence apparently worsens. As we have
seen previously, when b1 is infinitesimally close to b0, the first order term of the form factor
perturbation series dominates. However, as we move b0 slightly away, corrections from all
energy scales play a role.

8.4 What have we learned: massless regime for b > 1?

While one can see from the right panel of figure 23 that it is difficult to obtain accurate
results (again because of slow convergence in the cutoff) for b1 close to the self-dual point
(even when b0 itself is close to b = 1), we can use the properties of this massive interacting
basis to draw conclusions on the nature of the theory beyond b > 1. We begin, as before,
with a starting point b0 < 1 and aim to describe the theory for a fixed b1 > 1. We are
completely free to choose b0 < 1 and we so chose it such that it satisfies

Q(b0)
2 = 1

2

(
b0 + 1

b0

)
= b1. (8.18)

However for this particular choice of b1, the VEV of the vertex operator ebϕ (relative to
the b0 theory) is exactly zero! This in turn means that all matrix elements of ebϕ vanish.
Hence according to eq. (8.1), the perturbation consists in simply subtracting the original
vertex operators from the original Hamiltonian, which (formally at least) leads to a massless
Gaussian model. This argument suggests then that for b > 1, the ShG model, like its SG
counterpart is trivial.

Because Q(b0)
2 ≥ 1, ∀b0, this argument only works when the target theory satisfies

b1 ≥ 1. We note that perturbing a theory with a vertex operator with b > Q
2 is meaningless

as the vacuum expectation value becomes negative, thus (formally) making the spectrum
unbounded. A plausible explanation is that the VEV 〈eaϕ〉 in the Lagrangian formulation
is only identical to the FFLZ formula in the domain −Q

2 ≤ a ≤
Q
2 and vanishes identically

outside this interval. We note that this argument then requires us to use the FFLZ formula
at the boundary of its validity. These arguments are certainly heuristic but give nevertheless
a hint on the phase of the ShG model in the strong coupling regime b > 1.

9 Conclusions and future directions

In this paper we have studied in detail the ShG model in finite volume as a function of its
coupling constant b. This analysis has explored several important conceptual and numerical
features of this model. At the conceptual level, we have seen that the model admits two
different formulations, given in terms of (i) a Lagrangian and (ii) a S-matrix. The S-matrix
formulation is inherently an infrared theory, giving rise in particular to a thermodynamic
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Bethe ansatz equation describing in finite volume the energy of the ground and excited
states. Moreover, the S-matrix formulation is ecumenical as to the actual valueMShG of the
mass of the physical particle. The Lagrangian formulation, on the other hand, gives us the
opportunity to study the theory from several directions. Here the theory can be conceived
as a perturbation of a massive free boson or as a perturbation of a conformal field theory,
either Gaussian or Liouvillian. While the S-matrix formulation is manifestly invariant
under the weak/strong duality transformation, b → 1/b, the Lagrangian formulation has
no sign of such a symmetry.

Herein we have used truncated spectrum methods to study in finite volume the ShG
model. This proved to be particularly challenging. Indeed, while at small values of the
coupling constant b, dynamical quantities of the model — such as physical mass, vacuum
expectation values of vertex operators, finite volume energies of the ground state and
excited states, the two-body S-matrix — could be accurately determined and were found
to coincide with their theoretical predictions, this ceased to be true upon approach to
b = 1. There we observed that the values of these quantities started to deviate noticeably
from their predicted exact results. Indeed, in the vicinity of the self-dual point b = 1, the
TSM data showed a marked sensitivity to the cut-off Nc related to the number of states
employed by the TSM. This sensitivity is of a different nature from other quantum field
theories studied so far by means of TSM, a consequence of the unbounded exponential
nature of its interaction.

Understanding and attempting to ameliorate these difficulties have had a series of
positive by-products. In the first, we were able to come to a detailed understanding of
the small volume region of the theory through exploring the quantum mechanics of the
zero mode of the field. This analysis led us, in particular, to derive an effective potential
which took into account the effect of the oscillator modes. This permitted a more precise
measurement of the infrared parameters from the TSM through combining UV numerics
with the small-volume expansion of the TBA.

In a second happy after effect, we were able to extend the usual RG scheme for improv-
ing TSM numerical data. Normally these improvements are perturbative in the coupling of
the theory, here µShG. This series proved however to be pathological in µShG in the sense
that its coefficients diverge absent a UV cutoff and the coefficients at order n increase more
rapidly than n!, making the series not even Borel resummable. We were able to overcome
these pathologies using generalized resummation techniques for asymptotic series — here
dubbed a supra-Borel resummation. In particular we were able to show that summation
of this series led to a finite result upon taking the UV cutoff to infinity and that we could
partially explain the observed power law dependence in Nc observed in our TSM data. This
is the first time that the leading corrections at all orders in this perturbative RG treatment
for the TSM have been explicitly summed. This perhaps might be useful for studies of
other theories. In particular let us mention [29, 30] in the context of the φ4 model, wherein
efficient partial resummations of the series eq. (5.18) are achieved by employing a clever
variational Ansatz. We believe that here there is considerable work to be done in terms
of better undertanding the appropriate supra-Borel approximates to use and the potential
role resurgence theory [62–65] has to play.
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It is important to stress that all results obtained to this point indicate that the La-
grangian of the theory provide a faithful definition of the theory for b < 1, even though the
Lagrangian does not share the self-duality of the S-matrix. A hint about the ShG model
for b > 1 may however come from the third spinoff explored in this paper: treating the
ShG at a given coupling b1 as perturbation of a ShG model at another coupling, b0. As
explained in section 8.4, for b > 1 there is always the possibility of identifying a point b0
for which the perturbation is given in terms of a vertex operator Va with a = (b+ b−1)/2.
Since the VEV of this operator vanishes, it simultaneously ensures the vanishing of all of
the matrix elements involving cosh(bφ) and therefore leads to the remarkable conclusion
that the ShG model in the strong coupling regime b > 1 is a free massless theory!

We have already noted that in the strong coupling regime of the ShG model that
all exact and analytic formulas for the physical mass and vacuum expectation values (see
eqs. (2.26) and (2.33)) have a singularity at b = 1. If one analytically continues these
expressions beyond b = 1, they give, in general, complex values which make their physical
interpretation challenging. One can take the point of view that for b > 1 the Lagrangian
should be ignored and one should rely only on the S-matrix (and its explicit duality) to
define the theory. In this way one uses explicitly results for b < 1 to define the theory for
b > 1. However this is a tautological way of defining the duality as it leads to no predictions
with regards to the mass formula, the VEVs, and the energy levels.

It is worth stressing that the same conclusions may apply as well to all Toda field
theories which share with the ShG model all of its basic features, namely an apparent
duality of their S-matrix which is absent in their Lagrangian formulation. Using the
exact formulae reported in [75] of the Toda field theories for the physical mass, vacuum
expectation values, reflection amplitudes of the underlying (generalized) Liouville field
theory, one can repeat indeed the analysis done in this paper, applying in particular the
form factor basis to argue that the Toda field theories for b > 1 are massless models.
Indeed, establishing whether the ShG model and all Toda field theories are not in fact self-
dual models as their S-matrix suggests, but on the contrary are massless, as conjectured
in [76], is one of the most interesting and important open problems for the future.
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A Relating the couplings between the Gaussian and massive formula-
tions of the ShG model

In this appendix we derive the relation shown in eq. (2.19),

µShG = gm2+2b2

2b2
(
eγE

2

)2b2

, (A.1)

connecting the coupling µShG in the Gaussian formulation of the ShG model with the mass
m that appears in using Feynman perturbation theory in b. We do so by recasting the
finite volume Hamiltonian of the ShG theory where normal ordering is done with respect
to a massless basis to a Hamiltonian where the normal ordering is done with respect to a
massive oscillator basis. We use the form of the massive basis form (A.28) in section 8.3
where we compare it to the limit of form factors computed in a massive interacting basis.

A.1 Massless c = 1 boson

We first recall how the Hamiltonian of the ShG model on the cylinder as a perturbed
Gaussian theory is derived from the theory defined on the plane. This will inform how we
derive the ShG model on the cylinder using massive oscillators and ultimate how we arrive
at eq. (2.19).

Consider the c = 1 boson on the plane. The stress-energy tensor is given by

Tµν (z, z̄) = g

(
: ∂µϕ∂νϕ−

1
2ηµν∂ρϕ∂

ρϕ :
)
. (A.2)

In the main body of the paper we fixed g = 1
8π . In the following we keep this normalization

parameter explicit. The generator of dilatations is defined in terms of the stress-energy
tensor as

D(0) = 1
2πi

∫
C

dz zT (z) +
∫
C

dz̄ z̄T̄ (z̄)

 = L0 + L̄0, (A.3)

where the contour C may be chosen as the positively directed unit circle around the origin.
If we now map the theory to a cylinder of circumference R,

z = e
2π
R
w, w ≡ τ + ix, (A.4)

where τ is (Euclidean) time and x is the space coordinate, the dilaton operator becomes
the Hamiltonian on the cylinder:

H
(0)
cyl = 2π

R

(
Lcyl

0 + L̄cyl
0 −

1
12

)
. (A.5)

If we use the expansion of the field in terms of modes satisfying canonical commutation
relations

ϕ (x, τ) = ϕ0 + τΠ0
gR

+ 1√
4πg

∑
n 6=0

1√
|n|

(
ane

iknx + a†ne
−iknx

)
, (A.6)
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where
(
kn = 2πnR−1), the Hamiltonian eq. (A.5) can be written as

H
(0)
cyl =

(
Π2

0
2gR −

π

6R

)
+
∑
n 6=0

2π |n|
R

a†nan. (A.7)

While the − π
6R term can be thought of as arising from the anomalous properties of the

stress-energy tensor under conformal transformation, it can also be seen as a result of
bringing the oscillator modes into normal order. This will be important going forward.

We end this subsection by noting that under the mapping eq. (A.4), normal ordered
vertex operators on the plane and on the cylinder are related by

V(cyl)
b (w, w̄) =

(
R

2π

) b2
4πg
V(pl)
b (z (w) , z̄ (w̄)) . (A.8)

A.2 Free massive boson as a perturbed c = 1 boson

We now consider the massive boson as a perturbation of the massless one. To this end we
define the perturbed dilatation on the plane as

D(m) = L0 + L̄0 + lim
b→0

gm
2+ b2

4πg

2b2
∫
C

dz
(
V(pl)
b (z, z∗) + V(pl)

−b (z, z∗)
)
. (A.9)

By mapping this operator to the cylinder, and expanding in b, we obtain the following
Hamiltonian for the free massive boson:

H
(m)
cyl = H

(0)
cyl + gm2

2

R∫
0

: ϕ2 (x, 0) : dx+ m2R

4π ln
(
mR

2π

)
+ gm2

b2
. (A.10)

It is customary to subtract the singular gm2

b2 term. On the other hand, notice the other,
volume-dependent c-number term, a result of applying eq. (A.8) in the b → 0 limit. This
term will be important for making contact with energy as determined by the thermody-
namic Bethe ansatz (TBA).

Using the mode expansion of eq. (A.6), we can write our Hamiltonian as

H
(m)
cyl = H

(m)
ZM +H(m)

osc ;

H
(m)
ZM =

(
1

2gRΠ2
0 + gm2R

2 ϕ2
0 −

π

6R + m2R

4π ln
(
mR

2π

))
;

H(m)
osc =

∑
n 6=0

[
2π |n|
R

a†nan + m2R

8π |n|
(
2a†nan + a†na

†
−n + ana−n

)]
. (A.11)

We now rewrite this Hamiltonian in term of a massive oscillator basis.
We begin here with the zero mode Hamiltonian. It is a harmonic oscillator of frequency

m and ‘mass’ gR. Introducing massive zero mode operators a0 and a†0, we can write:

ϕ0 = 1√
2gmR

(
a0 + a†0

)
; Π0 = i

√
gmR

2
(
a†0 − a

)
. (A.12)
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In terms of the creation operators the zero mode Hamiltonian takes the form

H
(m)
ZM = ma†0a0 + m

2 −
π

6R + m2R

4π ln
(
Rm

2π

)
. (A.13)

We now turn to the oscillator part, H(m)
osc , of the Hamiltonian. This can be diagonalized

by means of a Bogoliubov transformation implemented by the unitary operator

U = exp
{
−
∑
m>0

χm
(
ama−m − a†ma

†
−m

)}
, (A.14)

where

eχn =
(
ωn
|kn|

) 1
2
, ωn =

√
k2
n +m2. (A.15)

This acts on the mode operators an as

U †anU = coshχ|n|an − sinhχ|n|a
†
−n;

U †a†−nU = coshχ|n|a
†
−n − sinhχ|n|an. (A.16)

Applying the Bogoliubov transformation to the Hamiltonian we obtain

H
(m)
cyl =

∞∑
n=−∞

ωna
†
nan + m

2 −
π

6R + m2R

4π ln
(
Rm

2π

)
+ S2(m,R);

S2 (m,R) =
∑
n 6=0

ωn
2 −

|kn|
2 − m2

4 |kn|
. (A.17)

The factor S2(m,R) arises from normal ordering the massive oscillator basis after the
Bogoliubov transformation is performed. In appendix B we show that it admits an integral
representation,

S2 (m,R) = π

6R −
m

2 + m2R

4π

(1
2 + ln 2

m
− γE

)
+ m2R

4π ln 2π
R

+ E
(m)
0 (m,R), (A.18)

where E(m)
0 (m,R) is defined as

E
(m)
0 (m,R) = m

∞∫
−∞

du

2π cosh u ln
(
1− e−mR coshu

)
. (A.19)

Our final result for the Hamiltonian is

H
(m)
cyl =

∞∑
n=−∞

ωna
†
nan + E0R+ Em0 (m,R);

E(m)
0 = m2

4π

(1
2 + ln 2− γE

)
. (A.20)

The ground state energy of this Hamiltonian agrees with the energy E(m)
0 (m,R) associated

with a free massive boson computed in TBA [19]. Here we are able to pin down the bulk
energy density, E0, that would be observed in a TSM computation. We also remark that

substituting µ = gm
2+ b2

4πg

2b2 into the exact sinh-Gordon bulk energy formula eq. (2.57) and
expanding in b results in the O

(
b0
)
term precisely coinciding with vacuum energy density

of eq. (A.20).
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A.3 Expressing the sinh-Gordon model in terms of a massive oscillator basis

Here we finally provide the derivation of eq. (2.19). Our starting point again is the per-
turbed dilatation operator that defines the sinh-Gordon theory on the plane to be:

D(shG) = L0 + L̄0 + µShG

∫
C

dz
(
V(pl)
b (z, z∗) + V(pl)

−b (z, z∗)
)
. (A.21)

Mapped to the cylinder, this gives rise to the Hamiltonian

H(shG) = H
(0)
cyl + µShG

(
R

2π

) b2
4πg

R∫
0

dx : ebϕ(x,0) : + : e−bϕ(x,0) : . (A.22)

The spatial integration can easily be carried out at the cost of imposing momentum con-
servation explicitly, symbolized by the presence of δP . Because we are interested in making
contact with the analysis of the sinh-Gordon as a massive perturbed boson, we add and
subtract at the same time an auxiliary mass term

H(shG) = H(m)
aux + µShGR

(
R

2π

) b2
4πg

δP
(
: ebϕ(x,0) : + : e−bϕ(x,0) :

)
− gm2

2 RδP : ϕ2 (0, 0) :;

H(m)
aux ≡ H

(0)
cyl + gm2

2 RδP : ϕ2 (0, 0) : . (A.23)

H
(m)
aux is the same type of Hamiltonian as H(m)

cyl of eq. (A.10). After a Bogoliubov transfor-
mation, it can be rewritten as

H(m)
aux =

∞∑
n=−∞

ωna
†
nan + E(m)

0 R+ E
(m)
0 (m,R)− m2R

4π ln
(
R

2π

)
. (A.24)

We now perform the same Bogoliubov transformation on the remaining terms of
eq. (A.23):

U †δP : ϕ2 (0, 0) : U = δP : ϕ2 (0, 0) :m + 1
2gmR + 1

2Rg
∑
n 6=0

( 1
ωn
− 1
|kn|

)
;

U †δP : cosh(bϕ(0, 0) : U = e
b2

4gmR e
− b2

4gR
∑

q 6=0

(
1
|kq |−

1
ωq

)
δP : cosh(bϕ(0, 0)) :m . (A.25)

Here the normal ordering ::m indicates the normal ordering is being done w.r.t. the massive
oscillator modes. The sum appearing in the above is evaluated in appendix B.1 to be

S1 ≡
∑
n 6=0

( 1
ωn
− 1
|kn|

)
= 2Rρ (mR)− 1

m
+ R

π

(
ln 4π
mR
− γE

)
, (A.26)

where ρ (x) is defined as

ρ (x) =
∞∫
−∞

du

2π
1

(ex coshu − 1) . (A.27)
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After transformation, our entire Hamiltonian appears as

H(shG) =
∞∑

n=−∞
ωna

†
nan + m2R

8π + E
(m)
0 (m,R)− m2R

2 ρ (mR) (A.28)

+ δP

(
−gm

2

2 RδP : ϕ2 (0, 0) :m +µShGR

( 2
m

) b2
4πg

e
b2
2g ρ(mR)

e
− b

2γE
4πg : cosh(bϕ(0, 0)) :m

)
.

We are now in a position to establish eq. (2.19). Using the large R limit of ρ, limx→∞ ρ (x) =
0, we choose m so that the quadratic term in the second line of eq. (A.28) vanishes,
resulting in

µShG = gm
2+ b2

4πg

2b2
(
eγE

2

) b2
4πg

. (A.29)

B Calculating S1 and S2

In this appendix we provide integral representations for the sums S1 and S2 introduced in
appendix A.

B.1 S1 (m, R) =
∑

n 6=0
1

ωn
− 1
|kn|

To evaluate this sum, let us first introduce a cutoff Λ = 2πN
R , N � 1, and then add and

subtract an auxiliary integral term:

S1 = lim
Λ→∞


 N∑
n=−N

1
ωn
− 1
m
− R

2π

Λ∫
−Λ

dk√
m2 + k2

+

 R

2π

Λ∫
−Λ

dk√
m2 + k2

− 2 R2π

N∑
n=1

1
n


 .

(B.1)
In the first term on the r.h.s. we have rewritten the sum so that it includes the n = 0 term.
Using the definition of the Euler-Mascheroni constant

γE = lim
N→∞

(
N∑
n=1

1
n
− lnN

)
, (B.2)

and the explicit expression of the integral
Λ∫
−Λ

dk√
m2 + k2

= 2 ln

Λ
m

+

√
1 + Λ2

m2

 = 2 lnN + 2 ln 4π
mR

+O

( 1
Λ2

)
, (B.3)

we can immediately evaluate the second term on the r.h.s. of eq. (B.1):

R

2π lim
Λ→∞

 Λ∫
−Λ

dk√
m2 + k2

− 2
N∑
n=1

1
n

 = R

π

(
ln 4π
mR
− γE

)
. (B.4)

The first term of eq. (B.1) can be evaluated in the same way that Matsubara sums are:

N∑
n=−N

1
ωn

= R

2π

∫
C

eipR

eipR − 1
1√

m2 + p2 . (B.5)
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Here the contour C consists of distinct, small circles around all poles between p = −Λ and
p = +Λ on the real axis. We deform this disjoint contour to form two straight vertical
line sections running slightly above and below the real axis. The contour in the lower-half
plane is then combined with the first integral in eq. (B.1). At this point the limit Λ→∞
can be taken and the two contours tightened around the branch cuts of the square roots.
In this way we obtain the representation,

lim
N→∞

N∑
n=−N

1
ωn
− R

2π

Λ∫
−Λ

dk√
m2 + k2

= 2R
π

∞∫
1

dτ

(emRτ − 1)
√
τ2 − 1

= R

π

∞∫
−∞

du

(emR coshu − 1) . (B.6)

Collecting terms, we see that

S1 = R

π

∞∫
−∞

du

(emR coshu − 1) −
1
m

+ R

π

(
ln 4π
mR
− γE

)
. (B.7)

B.2 S2 (m, R) =
∑

n 6=0
ωn

2 −
|kn|

2 −
m2

4|kn|

Let us begin with adding and subtracting
∑
n 6=0

m2

4ωn . Then we separate the sum into two
convergent parts:

S2 (m,R) = m2

4 S1 (m,R) + S̃2 (m,R)

S̃2 =
∑
n 6=0

s2 (kn) =
∑
n 6=0

ωn
2 −

|kn|
2 − m2

4ωn
, (B.8)

where S1 is given by eq. (B.7). The sum S̃2 can again be rewritten as a Matsubara-type
contour integral

S̃2 = R

2π

∫
C

eipR

eipR − 1s2 (p) , (B.9)

where now the contour C encloses all poles (in the positive direction) on the real axis except
for the one at the origin. The function s2 (p) has two overlapping pairs of branch cuts all
along the imaginary axis of the complex p plane. The contour C can be deformed in the
first step into two connected contours at each side of the branch cut, starting and ending
at infinity and enclosing all poles lying on one half of the real axis. In the second step,
this pair of contours is unbent to form two straight vertical lines aligned in the immediate
vicinity of the branch cuts. The contour integrals can then be written as a sum of integrals
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over the real line:

S̃2 = I1 + I2 (B.10)

I1 = −m
2R

2π

 −1∫
−∞

τ

e−mRτ − 1 +
∞∫
−1

τ

1− emRτ

− m

4 = π

6R + m2R

4π − m

4 , (B.11)

I2 = m2R

4π

 ∞∫
1

2τ + 1− 2τ2
√
τ2 − 1

coth
(
mRτ

2

) . (B.12)

The explicit term −m/4 arises in eq. (B.11) due to the pole at the origin. After a change
of variables τ = cosh u, the integral I2 becomes

I2 = −m
2R

8π − m2R

4π

∞∫
0

du

(
4 sinh usinh ue−mR coshu

1− e−mR coshu + 2
emR coshu − 1

)
, (B.13)

where an explicit integration
∫∞

0 e−2udu was performed. After an integration by parts in
the first term of the integral and extending the integration range from −∞ to ∞, we get

I2 = −m
2R

8π − m2R

4π

∞∫
−∞

du

(
−2 cosh u ln

(
1− e−mR coshu

)
+ 1
emR coshu − 1

)
. (B.14)

Combining all terms, we arrive at

S2 (m,R) = −m2 + m2R

4π

(1
2 + ln 2

m
− γE

)
+ m2R

4π ln 2π
R

+ π

6R +m

∞∫
−∞

du

2π cosh u ln
(
1− e−mR coshu

)
. (B.15)

C Perturbative expansion of finite volume eigenvalues

In this appendix we will consider the perturbative expansion for the ground state energy.
We begin generally and consider a Hamiltonian of the form

H = H0 + µV. (C.1)

A convenient representation of the expansion of the ground state energy, E0, is given by
the Brillouin-Wigner series

E0 = E0
0 + µV00 + µ2∑

m1

′ V0m1Vm10
E0 − E0

m1

+ . . .

+ µn
∑
m1

′∑
m2

′ · · ·
∑
mn−1

′ V0m1Vm1m2 . . . Vmn−10
(E0 − E0

m1) · · · (E0 − E0
mn−1) + . . . , (C.2)

where the primes indicate that the ground state is to be omitted from the sum. In the above
series, the exact value of the energy, E0, appears on both sides. The disconnected terms of
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the usual Rayleigh-Schrödinger series are generated by using the formula iteratively and
expanding in µ.

Now we are interested in the divergences appearing in the sinh-Gordon model. It
can easily seen that these disconnected terms are less divergent. We thus focus on the
connected contributions of this series:

E0 = E0
0 + µShGV00 + µ2

ShG
∑
m1

′ V0m1Vm10
E0

0 − E0
m1

+ . . .

+ µnShG
∑
m1

′∑
m2

′ · · ·
∑
mn−1

′ V0m1Vm1m2 . . . Vmn−10
(E0

0 − E0
m1) · · · (E0

0 − E0
mn−1)

+ . . . , (C.3)

where Vij denotes the matrix elements of the perturbation w.r.t. the unperturbed theory.
The n-th order term in the above can be rewritten as

δE
(n)
0 = µnShG

∑
m1

′∑
m2

′ · · ·
∑
mn−1

′ V0m1Vm1m2 . . . Vmn−10
(E0

0 − E0
m1) · · · (E0

0 − E0
mn−1)

= (−1)n−1µnShG
∑
m1

′∑
m2

′ · · ·
∑
mn−1

′
∞∫
0

dτ1 . . . dτn−1e
E0

0(τ1+···+τn−1)

V0m1e
−E(0)

m1τ1Vm1m2e
−E(0)

m2τ2 . . . e−E
(0)
mn−1τn−1Vmn−10, (C.4)

where, if we introduce τi = ti− ti+1, we can rewrite the nth order term as an integral over
an Euclidean correlator of the unperturbed theory:

δE
(n)
0 = (−1)n−1µnShG〈0|V (t1) . . . V (tn = 0)|0〉;

V (t) = eH0tV e−H0t. (C.5)

From now on, the time dependence of any operator is understood in the sense of eq. (C.5).
We now turn to the Hamiltonian of direct concern:

H = H0 + µShG

(
R

2π

)2b2 R∫
0

dx(ebϕ0 : ebϕ̃(x) : +e−bϕ0 : e−bϕ̃(x) :)− R

16πω
2
ϕ0ϕ0

2, (C.6)

with
H0 = 4π

R
Π2

0 + R

16πω
2
ϕ0ϕ0

2. (C.7)

Here we have added and subtracted a term quadratic in the zero mode allowing us to
formulate the perturbation theory about a massive zero mode. This choice allows for some
additional explicit steps in the following calculations.

Let us begin by evaluating the second order term in this perturbative expansion. The
vertex functions of the oscillator part of bosonic field, ϕ̃, can be written as

〈0| : eαϕ̃(τ,ρ) :: eβϕ̃(0,0) : |0〉 = 1
(1− e−

2π
R

(τ+iρ))2αβ(1− e−
2π
R

(τ−iρ))2αβ
. (C.8)

This correlator can be expanded into a binomial series

〈0| : ebϕ̃(t1,x1) :: ebϕ̃(t2,x2) : |0〉 =
∞∑

p12,q12=0
(−1)p12+q12

(
−2b2

p12

)(
−2b2

q12

)

e−
2π
R

(p12+q12)t1e
2π
R

(p12+q12)t2e−
2πi
R

(p12−q12)x1e−
2πi
R

(q12−p12)x2 . (C.9)
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The binomials admit the asymptotic behavior(
z

k

)
∼ (−1)k

Γ(−z)kz+1 , k � 1. (C.10)

The leading singular part of the second-order perturbative correction has the form

δE
(2)
0 = −2µ2

ShG

(
R

2π

)4b2 ∞∫
0

dt

R∫
0

dx1dx2〈0|ebϕ0(t)ebϕ0(0)|0〉〈0| : ebϕ̃(t,x1) :: ebϕ̃(0,x2) : |0〉.

(C.11)
Note that a factor 2 arises due to an analogous term with all exponents negative. The zero
mode quantum mechanics (C.7) is that of a harmonic oscillator, so the correlator on the
left is easily evaluated. We introduce

ϕ0 = ϕ0+ + ϕ0−, (C.12)

such that

ϕ0+ =
(

4π
Rωϕ0

) 1
2

aϕ0 ; ϕ0− =
(

4π
Rωϕ0

) 1
2

a†ϕ0

[aϕ0 , a
†
ϕ0 ] = 1. (C.13)

The Euclidean correlator takes the form

[ϕ0+(t), ϕ0−(0)] = 4π
Rωϕ0

e−ωϕ0 t. (C.14)

Using eq. (C.9), the x integrals can be performed immediately with the result

δE
(2)
0 = −2µ2

ShGR
2
(
R

2π

)4b2 ∞∫
0

dt〈0|ebϕ0(t)ebϕ0(0)|0〉
∞∑
m=0

(
−2b2

m

)2

e−
4π
R
mt. (C.15)

For b < 1√
2 , eq. (C.15) evaluates to a finite value. For larger couplings, we need to introduce

a chiral cutoff Nc. In this parameter domain, we can approximate the sum by an integral,
and using the asymptotic eq. (C.10), we obtain

δE
(2)
0 ≈ −2µ2

ShG

(
R

2π

)4b2 R2e
b2 4π
Rωϕ0

Γ(2b2)2

∞∫
0

dte
b2 4π
Rωϕ0

e−ωϕ0 t
Nc∫
0

dmm4b2−2e−
4π
R
mt. (C.16)

The ω−1/2
ϕ0 terms make an expansion singular around ωϕ0 = 0. On the other hand, having

in mind b > 1√
2 and a fixed ωϕ0 > 0, we argue that the corrections due to the double

exponential are subleading for large Nc. Let us expand the outer exponential into a Taylor
series. Then we need to perform simple exponential time integrals, which yield 1

m -like
terms. Rescaling m → Ncm̃ and factoring out Nc leaves an explicit kωϕ0N

−1
c term in

the denominator (k is the order of the Taylor expansion term). Even though k eventually

– 73 –



J
H
E
P
0
1
(
2
0
2
1
)
0
1
4

becomes comparable to Nc, the corresponding term is multiplied by an overall 1/k! factor,
which renders it negligible. What remains is an effective eb

2 4π
Rωϕ0 constant multiplier

δE
(2)
0 = −2µ2

ShG

(
R

2π

)4b2 R3e
b2 8π
Rωϕ0

4πΓ(2b2)2
N4b2−2
c

4b2 − 2(1 +O(N−1
c )) +O(N0

c ). (C.17)

Note that the spurious singularity at b = 1√
2 is due to the asymptotic approximation and

is unphysical.
Let us turn to the general case. The relevant correlation function has the form

〈0| : ebϕ̃(x1,t1) : · · · : ebϕ̃(xn,0) : |0〉 =
n−1∏
i=1

n∏
j=i+1

eb
2[ϕ̃+(ti,xi),ϕ̃−(tj ,xj)]

=
∞∑

{pij}=0

∞∑
{qij}=0

{ n−1∏
i=1

n∏
j=i+1

(−1)pij
(
−2b2

pij

)
(−1)qij

(
−2b2

qij

)}
e
− 2π
R

∑
i

∑
j>i

(pij+qij)ti

× e
2π
R

∑
j

∑
i<j

(pij+qij)tje
− 2πi

R

∑
i
[
∑

j>i
(pij−qij)−

∑
j<i

(pji−qji)]xi . (C.18)

The spatial integrations yield the relations∑
j>i

(pij − qij) =
∑
j<i

(pji − qji), i = 1 · · ·n− 1, (C.19)

which can be used to fix qin, ∀i:∑
j>i

pij +
∑
j<i

qji −
∑
j<i

pji −
∑
i<j<n

qij = qin. (C.20)

The Euclidean time integrations are to be taken over the simplex t1 > t2 > · · · > tn−1 > 0.
Using the simple formula

∞∫
0

dtn−1 . . .

∞∫
t3

dt2

∞∫
t2

dt1e
−(
∑n−1

i=1 miti) = 1
m1(m1 +m2) · · · (

∑n−1
i=1 mi)

, (C.21)

together with eq. (C.20), allows us to write:

∞∫
0

dtn−1 . . .

∞∫
t3

dt2

∞∫
t2

dt1〈0|V (t1) . . . V (tn = 0) |0〉 = 2
(
R

2π

)2nb2 e
2πb2
Rωϕ0

n2
R2n−1

(4π)n−1Γ(2b2)n(n−1)

×
Nc∫
0

∏n−1
i=1

∏n
j=i+1 dpijp

ξ
ij∏n−1

k=1

(∑n
j=k+1

∑k
i=1 pij

) Nc∫
0

n−2∏
i=1

n−1∏
j=i+1

dqijq
ξ
ij

×
n−1∏
l=1

∑
m>l

plm +
∑
m<l

qml −
∑
m<l

pml −
∑

l<m<n

qlm

ξ

×ΘH

∑
m>l

plm +
∑
m<l

qml −
∑
m<l

pml −
∑

l<m<n

qlm


×ΘH

1−

∑
m>l

plm +
∑
m<l

qml −
∑
m<l

pml −
∑

l<m<n

qlm

 , (C.22)
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where
ξ = 2b2 − 1.

In eq. (C.22) the time dependence of the zero mode correlators were neglected by an anal-
ogous argument to that of the δE(2)

0 case. The cutoff Nc can be scaled out by transforming
to new variables pij = Ncp̃ij , qij = Ncq̃ij , resulting in the final form of the leading order
asymptotic

δE
n)
0 ≈(−1)n−12µnShG

(
R

2π

)2nb2

e
2πb2
Rωϕ0

n2R2n−1N
2(1−n)+2b2(n2−n)
c

(4π)n−1Γ(2b2)n(n−1) In, (C.23)

with the integral In defined as

In =
1∫

0

∏n−1
i=1

∏n
j=i+1 dpijp

ξ
ij∏n−1

k=1

(∑n
j=k+1

∑k
i=1 pij

) 1∫
0

n−2∏
i=1

n−1∏
j=i+1

dqijq
ξ
ij

×
n−1∏
l=1

∑
m>l

plm +
∑
m<l

qml −
∑
m<l

pml −
∑

l<m<n

qlm

ξ

×ΘH

∑
m>l

plm +
∑
m<l

qml −
∑
m<l

pml −
∑

l<m<n

qlm


×ΘH

1−

∑
m>l

plm +
∑
m<l

qml −
∑
m<l

pml −
∑

l<m<n

qlm

 . (C.24)

This is the form that we use as a starting point in section 7.2.

D Form factors of the sinh-Gordon model

In this appendix we provide the explicit form of infinite volume form factors needed for
the implementation of the form factor TSM in section 8.

Using the S-matrix (eq. (2.31)) and the integrability of the model, one can compute the
exact form factors of the local operators O on the multi-particle states of the theory [2, 3]:

〈0|O(0)|θ1, . . . , θn〉 ≡ FOk (θ1, . . . , θn). (D.1)

Introducing the notation
[k] = sin k πB

sin πB , (D.2)

where the function B(b) is given in eq. (2.32), the form factors of the exponential fields in
the ShG model can be written as

〈0|ekbφ(0)|θ1, . . . , θn〉 = 〈ekbφ〉Fn(θ1, . . . , θn), (D.3)

where 〈ekbφ〉 is the VEV given in eq. (2.33) and Fn(θ1, . . . , θn) is given by

Fn(θ1, . . . , θn) = HnQn(x1, . . . , xn)
n∏
i<j

Fmin(θij)
xi + xj

, (D.4)
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where

Fmin (θ) = exp

−2
∫ ∞

0

dt

t

sinh
(
tB
2

)
sinh

(
t(1−B)

2

)
sinh(t) cosh

(
t
2
) cos

(
t(iπ − θ)

π

) ,
Hn =

( 4 sin πB
Fmin(iπ)

)n
2

[k], xi = eθi , (D.5)

and Qn(x1, . . . , xn) are symmetric polynomials in xi given by

Qn(x1, . . . , xn) = detM, Mi,j = [i− j + k]σ(n)
2i−j , (D.6)

with σ
(n)
s the elementary symmetric polynomials in n variables of total degree s. Form

factors of the ShG model were also studied in [77, 78].

E Reverse communication protocols and chiral factorization

There are several iterative numerical methods (Lánczos, Arnoldi, Jacobi-Davidson, etc.)
to obtain the smallest eigenvalues (and the corresponding eigenvectors) of a Hamiltonian.
A common feature of these algorithms is that they do not need all of the Hamiltonian’s
matrix elements to be stored in memory. What they do require is a routine by which
arbitrary vectors are acted upon by the Hamiltonian matrix. We will describe in this
section how the tensor product nature of the Hilbert space for the sinh-Gordon model
makes this matrix-vector multiplication remarkably efficient.

E.1 Separating zero and oscillator modes

As a demonstration of the numerical efficiency that can be obtained, we begin by factorizing
the Hilbert space into (merely) two pieces,

H = HZM ⊗Hosc, (E.1)

one encompassing the zero mode HZM and one the oscillator modes, Hosc = HL⊗HR. Let
N = dimH, NZM = dimHZM , Nosc = dimHosc be the sizes of these various Hilbert spaces.

We want to compute the action of our Hamiltonian upon a vector |v〉. Normally this
would require N2 multiplications. We show that this can be reduced by a factor of NZM .
To do so, we write |v〉 in terms of our tensored Hilbert space:

|v〉 =
∑
J

vJ |j〉 ≡
∑
j0,j̃

vj0j̃ |j0〉 ⊗ |j̃〉. (E.2)

with |j0〉 a basis vector for HZM and |j̃〉 a basis vector of Hosc. The Hamiltonian consists
of a sum of matrices Φ whose matrix elements respect the tensor product structure:

ΦIJ = (Φ0)i0j0(Φ̃)k̃l̃, (E.3)

where Φ0/Φ̃ act in H0/Hosc. Applying Φ to |v〉 then leads to the need to evaluate:
N∑
J=1

ΦIJvJ =
NZM∑
j0=1

Nosc∑
j̃=1

(Φ0)i0j0(Φ̃)̃ij̃vj0j̃ . (E.4)
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To do so we first perform the matrix-vector multiplication involving the oscillator modes:

Wj0 ĩ
=

Nosc∑
j̃=1

(Φ̃)̃ij̃vj0j̃ . (E.5)

This involves NZMN
2
osc multiplications. We now follow this by the matrix-vector product

over the zero mode space:

Ui0 ĩ =
NZM∑
j0=1

(Φ0)i0j0Wj0 ĩ
. (E.6)

This involves another N2
ZMNosc multiplications. If we write |u〉 = Φ|v〉, its components,

uI are defined as
uI ≡ ui0 ĩ = Ui0 ĩ. (E.7)

As is typical in our computations, NZM � Nosc, we see that we have reduced the total
number of multiplications by an approximate factor of NZM . The above algorithm is a
variant of the Shuffle Algorithm where ‘shuffle’ refers to the reshuffling of elements of the
vector |v〉 into a multi-index tensor vj0j̃ .

E.2 Exploiting the structure of Hosc

The above multiplication algorithm can be further optimized by taking into account the
chiral structure of the oscillator Hilbert space. Here we will account for momentum conser-
vation. Up to a chiral cutoff Nc, the oscillator Hilbert space in the momentum zero sector
takes the form: (

H(0)
L ⊗H

(0)
R

)
⊕
(
H(1)
L ⊗H

(1)
R

)
⊕ · · · ⊕

(
H(Nc)
L ⊗H(Nc)

R

)
. (E.8)

Here H(m)
L,R is the Hilbert space of all states in the oscillator space of level m (i.e. the state

a†n1 · · · a
†
nk
|0〉 ∈ HR belongs to H(m)

R if
∑
nl = m). The dimensionality of H(i)

L,R is

dimH(i)
L/R = P(i) (E.9)

where P(i) denotes the number of integer partitions of i with P(0) = 1. The dimension of
the chiral/anti-chiral Hilbert space is

NL/R =
Nc∑
j=0
P(j), (E.10)

while the dimension of the oscillator Hilbert space (of zero momentum states) is

Nosc =
Nc∑
j=0
P(j)2. (E.11)

We can proceed just as in the previous section. We write the vector |v〉 that we want
to multiply as

|v〉 =
NZM∑
j0=1

Nc∑
k=0

P(k)∑
nk,n̄k=1

v
(k)
j0nkn̄k

|j0〉0 ⊗ |k, nk〉L ⊗ |k, n̄k〉R (E.12)
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where the same level index k appearing in the left/right chiral vectors encodes momentum
conservation. The matrix Φ representing one of the terms in the Hamiltonian is

Φ =
NZM∑
i0,j0=1

Nc∑
i,j=0

P(i)∑
ni,n̄i=1

P(j)∑
nj ,n̄j=1

(Φ0)i0j0
(
Φ(i,j)
L

)
ni,nj

(
Φ(i,j)
R

)
n̄i,n̄j

× |i0〉0〈j0|0 ⊗ |i, ni〉L〈j, nj |L ⊗ |i, n̄i〉R〈j, n̄j |R. (E.13)

Applying Φ to |v〉 yields

ΦIJvJ =
NZM∑
j0=1

Nc∑
j=0

P(j)∑
nj ,n̄j=1

(Φ0)i0j0
(
Φ(i,j)
L

)
ni,nj

(
Φ(i,j)
R

)
n̄i,n̄j

v
(j)
j0nj n̄j

. (E.14)

We now determine the number of multiplications necessary to evaluate this expression. The
first step is to evaluate the action of ΦR. This costs NoscNLNZM multiplications. Similarly
the application of the ΦL matrix involvesNoscNRNZM multiplications. Finally the action of
Φ0 costs NLNRN

2
ZM multiplications. The total number of required multiplications is thus

nNosc(NL +NR)NZM +NLNRN
2
ZM . (E.15)

For larger values of Nc, the number of needed multiplications can be several hundred times
smaller than using the naive matrix-vector multiplication involving (NoscNZM )2 multipli-
cations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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