V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys.
51 (2003) 311 [hep-ph/0306057] [INSPIRE].
J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, in 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017) Les Houches, France, June 5–23, 2017, [arXiv:1803.07977] [INSPIRE].
D. Chicherin, J.M. Henn and E. Sokatchev, Scattering Amplitudes from Superconformal Ward Identities, Phys. Rev. Lett.
121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].
Article
ADS
Google Scholar
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.
5 (1989) 1 [hep-ph/0409313] [INSPIRE].
S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.
B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.
D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP
08 (2008) 022 [arXiv:0805.3515] [INSPIRE].
Article
ADS
Google Scholar
T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.
102 (2009) 162001 [Erratum ibid.
111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.
117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].
Article
ADS
Google Scholar
J. Wess and B. Zumino, A Lagrangian Model Invariant Under Supergauge Transformations, Phys. Lett.
49B (1974) 52 [INSPIRE].
Article
ADS
Google Scholar
S. Ferrara, J. Iliopoulos and B. Zumino, Supergauge Invariance and the Gell-Mann-Low Eigenvalue, Nucl. Phys.
B 77 (1974) 413 [INSPIRE].
ADS
Google Scholar
D. Chicherin and E. Sokatchev, Conformal anomaly of generalized form factors and finite loop integrals, JHEP
04 (2018) 082 [arXiv:1709.03511] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 Superconformal Symmetry, JHEP
11 (2009) 056 [arXiv:0905.3738] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
G.P. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N = 4 SYM theory, Nucl. Phys.
B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in N = 4 Super Yang-Mills, JHEP
04 (2010) 085 [arXiv:1002.1733] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
F. Cachazo, P. Svrček and E. Witten, Gauge theory amplitudes in twistor space and holomorphic anomaly, JHEP
10 (2004) 077 [hep-th/0409245] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
S.J. Bidder, N.E.J. Bjerrum-Bohr, L.J. Dixon and D.C. Dunbar, N = 1 supersymmetric one-loop amplitudes and the holomorphic anomaly of unitarity cuts, Phys. Lett.
B 606 (2005) 189 [hep-th/0410296] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP
12 (2011) 066 [arXiv:1105.5606] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP
11 (2011) 023 [arXiv:1108.4461] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.
117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
Article
ADS
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.
B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.
105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP
10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.
252 (2004) 189 [hep-th/0312171] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP
06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP
05 (2018) 164 [arXiv:1712.09610] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP
10 (2018) 103 [arXiv:1807.09812] [INSPIRE].
Article
MATH
ADS
Google Scholar
S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP
01 (2019) 006 [arXiv:1807.11522] [INSPIRE].
Article
ADS
MATH
MathSciNet
Google Scholar
D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, arXiv:1809.06240 [INSPIRE].
H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].
J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP
09 (2018) 024 [arXiv:1805.01873] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.
120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
Article
ADS
MATH
Google Scholar
S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev.
D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
ADS
Google Scholar
S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP
11 (2018) 116 [arXiv:1809.09067] [INSPIRE].
Article
ADS
MathSciNet
MATH
Google Scholar
C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP
04 (2016) 078 [arXiv:1511.09404] [INSPIRE].
ADS
Google Scholar
J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A., (1992).
MATH
Google Scholar
J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP
04 (2009) 018 [arXiv:0808.2475] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N = 4 SYM, JHEP
06 (2011) 100 [arXiv:1104.2787] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
T. Gehrmann and E. Remiddi, Two loop master integrals for γ
* → 3 jets: The planar topologies, Nucl. Phys.
B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of Planar N = 4 Super Yang-Mills, JHEP
07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP
04 (2011) 088 [arXiv:1006.2788] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP
12 (2011) 024 [arXiv:1109.5057] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
S. Weinzierl, Does one need the O(ϵ)- and O(ϵ
2)-terms of one-loop amplitudes in an NNLO calculation?, Phys. Rev.
D 84 (2011) 074007 [arXiv:1107.5131] [INSPIRE].
ADS
Google Scholar
A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav.
1 (1984) 469 [Erratum ibid.
2 (1985) 127] [INSPIRE].
I.M. Gelfand and G.E. Shilov, Generalized functions. Vol. 1, Properties and operations, Academic Press, New York, NY, U.S.A., (1964).
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.
B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
MathSciNet
Article
MATH
ADS
Google Scholar
N.I. Usyukina and A.I. Davydychev, An approach to the evaluation of three and four point ladder diagrams, Phys. Lett.
B 298 (1993) 363 [INSPIRE].
Article
ADS
Google Scholar
F. Cachazo, Holomorphic anomaly of unitarity cuts and one-loop gauge theory amplitudes, hep-th/0410077 [INSPIRE].
F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP
09 (2004) 006 [hep-th/0403047] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar