Skip to main content

Effective hopping in holographic Bose and Fermi-Hubbard models

A preprint version of the article is available at arXiv.

Abstract

In this paper, we analyze a proposed gravity dual to a SU(N) Bose-Hubbard model, as well as construct a holographic dual of a SU(N) Fermi-Hubbard model from D-branes in string theory. In both cases, the SU(N) is dynamical, i.e. the hopping degrees of freedom are strongly coupled to SU(N) gauge bosons which themselves are strongly interacting. The vacuum expectation value (VEV) of the hopping term (i.e. the hopping energy) is analyzed in the gravity dual as a function of the bulk mass of the field dual to the hopping term, as well as of the coupling constants of the model. The bulk mass controls the anomalous dimension (i.e. the critical exponent) of the hopping term in the SU(N) Bose-Hubbard model. We compare the hopping energy to the corresponding result in a numerical simulation of the ungauged SU(N ) Bose-Hubbard model. We find agreement when the hopping parameter is smaller than the other couplings. Our analysis shows that the kinetic energy increases as the bulk mass increases, due to increased contributions from the IR. The holographic Bose-Hubbard model is then compared with the string theory construction of a SU(N) Fermi-Hubbard model. The string theory construction makes it possible to describe fluctuations around a half-filled state in the supergravity limit, which map to \( \mathcal{O}(1) \) occupation number fluctuations in the Fermi-Hubbard model at half filling. Finally, the VEV of the Bose-Hubbard model is shown to agree with the one of the fermionic Hubbard model with the help of a two-site version of the Jordan-Wigner transformation.

References

  1. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner and P. Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev. Lett. 81 (1998) 3108 [INSPIRE].

    ADS  Article  Google Scholar 

  2. M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40 (1989) 546 [INSPIRE].

  3. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  4. M. Fujita, S. Harrison, A. Karch, R. Meyer and N.M. Paquette, Towards a Holographic Bose-Hubbard Model, JHEP 04 (2015) 068 [arXiv:1411.7899] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. A. Karch and A. Katz, Adding flavor to AdS/CFT, Fortsch. Phys. 51 (2003) 759 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. S. Kachru, A. Karch and S. Yaida, Holographic Lattices, Dimers and Glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].

  7. S. Kachru, A. Karch and S. Yaida, Adventures in Holographic Dimer Models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].

  8. J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A Holographic Model of the Kondo Effect, JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].

    ADS  Article  Google Scholar 

  9. A. O’Bannon, I. Papadimitriou and J. Probst, A Holographic Two-Impurity Kondo Model, JHEP 01 (2016) 103 [arXiv:1510.08123] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  10. C.J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, Cambridge University Press (2002).

  11. A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed gases at finite temperatures, Cambridge University Press (2009).

  12. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].

  14. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

  15. J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. A. Sen, State Operator Correspondence and Entanglement in AdS 2 /CF T 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].

  17. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].

  18. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].

  19. P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum Quench Across a Zero Temperature Holographic Superfluid Transition, JHEP 03 (2013) 146 [arXiv:1211.7076] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  24. A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS 2 Black Holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].

  25. J.M. Camino, A. Paredes and A.V. Ramallo, Stable wrapped branes, JHEP 05 (2001) 011 [hep-th/0104082] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

  27. A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [arXiv:1212.0871] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  29. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

  30. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. J. Sonnenschein, Holography Inspired Stringy Hadrons, Prog. Part. Nucl. Phys. 92 (2017) 1 [arXiv:1602.00704] [INSPIRE].

    ADS  Article  Google Scholar 

  33. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

  34. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

  36. M. Fujita, C.M. Melby-Thompson, R. Meyer and S. Sugimoto, Holographic Chern-Simons Defects, JHEP 06 (2016) 163 [arXiv:1601.00525] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

  39. M.R. Garousi and R.C. Myers, World volume interactions on D-branes, Nucl. Phys. B 542 (1999) 73 [hep-th/9809100] [INSPIRE].

  40. D.N. Kabat and W. Taylor, Spherical membranes in matrix theory, Adv. Theor. Math. Phys. 2 (1998) 181 [hep-th/9711078] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  41. Z. Abidin and C.E. Carlson, Strange hadrons and kaon-to-pion transition form factors from holography, Phys. Rev. D 80 (2009) 115010 [arXiv:0908.2452] [INSPIRE].

  42. F. Zuo, Y. Jia and T. Huang, γ ρ 0π 0 Transition Form Factor in Extended AdS/QCD Models, Eur. Phys. J. C 67 (2010) 253 [arXiv:0910.3990] [INSPIRE].

  43. A. Ballon-Bayona, G. Krein and C. Miller, Decay constants of the pion and its excitations in holographic QCD, Phys. Rev. D 91 (2015) 065024 [arXiv:1412.7505] [INSPIRE].

  44. Y. Araki and T. Hatsuda, Chiral Gap and Collective Excitations in Monolayer Graphene from Strong Coupling Expansion of Lattice Gauge Theory, Phys. Rev. B 82 (2010) 121403 [arXiv:1003.1769] [INSPIRE].

  45. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

  46. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  47. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

  48. S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91 (2015) 155126 [arXiv:1501.03165] [INSPIRE].

  49. O. Aharony, J. Sonnenschein and S. Yankielowicz, A Holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (1998) [INSPIRE].

  51. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge, U.K. (1998) [INSPIRE].

  52. A.A. Tseytlin, On nonAbelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].

  53. A. Hashimoto and W. Taylor, Fluctuation spectra of tilted and intersecting D-branes from the Born-Infeld action, Nucl. Phys. B 503 (1997) 193 [hep-th/9703217] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Fujita.

Additional information

ArXiv ePrint: 1805.12584

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujita, M., Meyer, R., Pujari, S. et al. Effective hopping in holographic Bose and Fermi-Hubbard models. J. High Energ. Phys. 2019, 45 (2019). https://doi.org/10.1007/JHEP01(2019)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2019)045

Keywords

  • Gauge-gravity correspondence
  • Holography and condensed matter physics (AdS/CMT)