Skip to main content

Heavy fields and gravity

An Erratum to this article was published on 30 March 2017

A preprint version of the article is available at arXiv.

Abstract

We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-(A)dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ∼ R 3 terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it’s found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.

References

  1. R. Ruffini, Y.-B. Wu and S.-S. Xue, Einstein-Euler-Heisenberg Theory and charged black holes, Phys. Rev. D 88 (2013) 085004 [arXiv:1307.4951] [INSPIRE].

    ADS  Google Scholar 

  2. M. Lu and M.B. Wise, Black holes with a generalized gravitational action, Phys. Rev. D 47 (1993) R3095 [gr-qc/9301021] [INSPIRE].

  3. J. Matyjasek, M. Telecka and D. Tryniecki, Higher dimensional black holes with a generalized gravitational action, Phys. Rev. D 73 (2006) 124016 [hep-th/0606254] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. B.E. Taylor, W.A. Hiscock and P.R. Anderson, Semiclassical charged black holes with a quantized massive scalar field, Phys. Rev. D 61 (2000) 084021 [gr-qc/9911119] [INSPIRE].

  5. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. J. Smolic and M. Taylor, Higher derivative effects for 4d AdS gravity, JHEP 06 (2013) 096 [arXiv:1301.5205] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. J. Matyjasek, Entropy of quantum-corrected black holes, Phys. Rev. D 74 (2006) 104030 [gr-qc/0610020] [INSPIRE].

  8. S.M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison-Wesley (2004).

  9. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company, New York U.S.A. (1973).

  10. S.B. Edgar and A. Hoglund, Dimensionally dependent tensor identities by double antisymmetrization, J. Math. Phys. 43 (2002) 659 [gr-qc/0105066] [INSPIRE].

  11. S.A. Fulling, R.C. King, B.G. Wybourne and C.J. Cummins, Normal forms for tensor polynomials. 1: The Riemann tensor, Class. Quant. Grav. 9 (1992) 1151 [INSPIRE].

  12. G.’t Hooft and M.J. G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor. A20 (1974) 69.

  13. T. Liko, Topological deformation of isolated horizons, Phys. Rev. D 77 (2008) 064004 [arXiv:0705.1518] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. S. Chatterjee and M. Parikh, The second law in four-dimensional Einstein-Gauss-Bonnet gravity, Class. Quant. Grav. 31 (2014) 155007 [arXiv:1312.1323] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. S. Sarkar and A.C. Wall, Second Law Violations in Lovelock Gravity for Black Hole Mergers, Phys. Rev. D 83 (2011) 124048 [arXiv:1011.4988] [INSPIRE].

    ADS  Google Scholar 

  16. J.M. Martın-García, xAct, Efficient tensor computer algebra for mathematica, http://www.xact.es.

  17. G. Goon and K. Hinterbichler, in preparation.

  18. P.H. Ginsparg and M.J. Perry, Semiclassical Perdurance of de Sitter Space, Nucl. Phys. B 222 (1983) 245 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. R. Bousso and S.W. Hawking, (Anti)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev. D 57 (1998) 2436 [hep-th/9709224] [INSPIRE].

  20. S. Nojiri and S.D. Odintsov, Quantum evolution of Schwarzschild-de Sitter (Nariai) black holes, Phys. Rev. D 59 (1999) 044026 [hep-th/9804033] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. A.A. Bytsenko, S. Nojiri and S.D. Odintsov, Quantum generation of Schwarzschild-de Sitter (Nariai) black holes in effective dilaton-Maxwell gravity, Phys. Lett. B 443 (1998) 121 [hep-th/9808109] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. S. Nojiri and S.D. Odintsov, Anti-Evaporation of Schwarzschild-de Sitter Black Holes in F (R) gravity, Class. Quant. Grav. 30 (2013) 125003 [arXiv:1301.2775] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    ADS  Google Scholar 

  24. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].

  25. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

  26. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].

  27. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

    ADS  Article  Google Scholar 

  29. X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].

    ADS  Article  Google Scholar 

  32. V. Balasubramanian, J. de Boer and D. Minic, Mass, entropy and holography in asymptotically de Sitter spaces, Phys. Rev. D 65 (2002) 123508 [hep-th/0110108] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. H. Georgi, Weak Interactions, http://www.people.fas.harvard.edu/∼hgeorgi/weak.pdf.

  34. A.V. Manohar, Effective field theories, Lect. Notes Phys. 479 (1997) 311 [hep-ph/9606222] [INSPIRE].

  35. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  36. H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    ADS  Article  Google Scholar 

  37. E.C.G. Stueckelberg, Theory of the radiation of photons of small arbitrary mass, Helv. Phys. Acta 30 (1957) 209 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  38. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  39. I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, hep-th/9510140 [INSPIRE].

  40. G.R. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Scales of gravity, Phys. Rev. D 65 (2002) 024031 [hep-th/0106058] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. T.D. Cohen and D.A. McGady, The Schwinger mechanism revisited, Phys. Rev. D 78 (2008) 036008 [arXiv:0807.1117] [INSPIRE].

    ADS  Google Scholar 

  43. J.D. Bekenstein, A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems, Phys. Rev. D 23 (1981) 287 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. R. Bousso, The Holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281 [hep-th/9503016] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev. D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].

    ADS  Google Scholar 

  48. M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres, Mem. Acad. St. Petersbourg 6 (1850) 385 [INSPIRE].

    Google Scholar 

  49. R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].

  50. J.Z. Simon, Higher Derivative Lagrangians, Nonlocality, Problems and Solutions, Phys. Rev. D 41 (1990) 3720 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. X. Jaen, J. Llosa and A. Molina, A Reduction of order two for infinite order lagrangians, Phys. Rev. D 34 (1986) 2302 [INSPIRE].

    ADS  Google Scholar 

  52. C.P. Burgess and M. Williams, Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs, JHEP 08 (2014) 074 [arXiv:1404.2236] [INSPIRE].

    ADS  Article  Google Scholar 

  53. I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. G. Goon and K. Hinterbichler, Superluminality, Black Holes and Effective Field Theory, arXiv:1609.00723 [INSPIRE].

  55. J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

  56. N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev. D 68 (2003) 084005 [Erratum ibid. D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].

  57. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP 11 (2016) 117 [arXiv:1609.07477] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  60. M.J. Duff, Quantum corrections to the Schwarzschild solution, Phys. Rev. D 9 (1974) 1837 [INSPIRE].

    ADS  Google Scholar 

  61. B.K. El-Menoufi, Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy, JHEP 05 (2016) 035 [arXiv:1511.08816] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. J.F. Donoghue and B.K. El-Menoufi, Covariant non-local action for massless QED and the curvature expansion, JHEP 10 (2015) 044 [arXiv:1507.06321] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon Non-Renormalization, JHEP 11 (2016) 100 [arXiv:1606.02295] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Goon.

Additional information

ArXiv ePrint: 1611.02705

An erratum to this article is available at http://dx.doi.org/10.1007/JHEP03(2017)161.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goon, G. Heavy fields and gravity. J. High Energ. Phys. 2017, 45 (2017). https://doi.org/10.1007/JHEP01(2017)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2017)045

Keywords

  • Black Holes
  • Effective field theories