R. Ruffini, Y.-B. Wu and S.-S. Xue, Einstein-Euler-Heisenberg Theory and charged black holes, Phys. Rev.
D 88 (2013) 085004 [arXiv:1307.4951] [INSPIRE].
ADS
Google Scholar
M. Lu and M.B. Wise, Black holes with a generalized gravitational action, Phys. Rev.
D 47 (1993) R3095 [gr-qc/9301021] [INSPIRE].
J. Matyjasek, M. Telecka and D. Tryniecki, Higher dimensional black holes with a generalized gravitational action, Phys. Rev.
D 73 (2006) 124016 [hep-th/0606254] [INSPIRE].
ADS
MathSciNet
Google Scholar
B.E. Taylor, W.A. Hiscock and P.R. Anderson, Semiclassical charged black holes with a quantized massive scalar field, Phys. Rev.
D 61 (2000) 084021 [gr-qc/9911119] [INSPIRE].
Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP
12 (2007) 068 [hep-th/0606100] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Smolic and M. Taylor, Higher derivative effects for 4d AdS gravity, JHEP
06 (2013) 096 [arXiv:1301.5205] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Matyjasek, Entropy of quantum-corrected black holes, Phys. Rev.
D 74 (2006) 104030 [gr-qc/0610020] [INSPIRE].
S.M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison-Wesley (2004).
C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company, New York U.S.A. (1973).
S.B. Edgar and A. Hoglund, Dimensionally dependent tensor identities by double antisymmetrization, J. Math. Phys.
43 (2002) 659 [gr-qc/0105066] [INSPIRE].
S.A. Fulling, R.C. King, B.G. Wybourne and C.J. Cummins, Normal forms for tensor polynomials. 1: The Riemann tensor, Class. Quant. Grav.
9 (1992) 1151 [INSPIRE].
G.’t Hooft and M.J. G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor.
A20 (1974) 69.
T. Liko, Topological deformation of isolated horizons, Phys. Rev.
D 77 (2008) 064004 [arXiv:0705.1518] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Chatterjee and M. Parikh, The second law in four-dimensional Einstein-Gauss-Bonnet gravity, Class. Quant. Grav.
31 (2014) 155007 [arXiv:1312.1323] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Sarkar and A.C. Wall, Second Law Violations in Lovelock Gravity for Black Hole Mergers, Phys. Rev.
D 83 (2011) 124048 [arXiv:1011.4988] [INSPIRE].
ADS
Google Scholar
J.M. Martın-García, xAct, Efficient tensor computer algebra for mathematica, http://www.xact.es.
G. Goon and K. Hinterbichler, in preparation.
P.H. Ginsparg and M.J. Perry, Semiclassical Perdurance of de Sitter Space, Nucl. Phys.
B 222 (1983) 245 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Bousso and S.W. Hawking, (Anti)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev.
D 57 (1998) 2436 [hep-th/9709224] [INSPIRE].
S. Nojiri and S.D. Odintsov, Quantum evolution of Schwarzschild-de Sitter (Nariai) black holes, Phys. Rev.
D 59 (1999) 044026 [hep-th/9804033] [INSPIRE].
ADS
MathSciNet
Google Scholar
A.A. Bytsenko, S. Nojiri and S.D. Odintsov, Quantum generation of Schwarzschild-de Sitter (Nariai) black holes in effective dilaton-Maxwell gravity, Phys. Lett.
B 443 (1998) 121 [hep-th/9808109] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Nojiri and S.D. Odintsov, Anti-Evaporation of Schwarzschild-de Sitter Black Holes in F (R) gravity, Class. Quant. Grav.
30 (2013) 125003 [arXiv:1301.2775] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev.
D 15 (1977) 2752 [INSPIRE].
ADS
Google Scholar
R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.
D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.
D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev.
D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP
08 (2013) 090 [arXiv:1304.4926] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett.
28 (1972) 1082 [INSPIRE].
ADS
Article
Google Scholar
X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP
01 (2014) 044 [arXiv:1310.5713] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Camps, Generalized entropy and higher derivative Gravity, JHEP
03 (2014) 070 [arXiv:1310.6659] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed cones and holography, JHEP
01 (2014) 021 [arXiv:1308.5748] [INSPIRE].
ADS
Article
Google Scholar
V. Balasubramanian, J. de Boer and D. Minic, Mass, entropy and holography in asymptotically de Sitter spaces, Phys. Rev.
D 65 (2002) 123508 [hep-th/0110108] [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Georgi, Weak Interactions, http://www.people.fas.harvard.edu/∼hgeorgi/weak.pdf.
A.V. Manohar, Effective field theories, Lect. Notes Phys.
479 (1997) 311 [hep-ph/9606222] [INSPIRE].
N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP
12 (2016) 040 [arXiv:1607.03735] [INSPIRE].
ADS
Article
Google Scholar
E.C.G. Stueckelberg, Theory of the radiation of photons of small arbitrary mass, Helv. Phys. Acta
30 (1957) 209 [INSPIRE].
MathSciNet
MATH
Google Scholar
K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys.
84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
ADS
Article
Google Scholar
I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, hep-th/9510140 [INSPIRE].
G.R. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Scales of gravity, Phys. Rev.
D 65 (2002) 024031 [hep-th/0106058] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.
82 (1951) 664 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.D. Cohen and D.A. McGady, The Schwinger mechanism revisited, Phys. Rev.
D 78 (2008) 036008 [arXiv:0807.1117] [INSPIRE].
ADS
Google Scholar
J.D. Bekenstein, A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems, Phys. Rev.
D 23 (1981) 287 [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Bousso, A Covariant entropy conjecture, JHEP
07 (1999) 004 [hep-th/9905177] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Bousso, The Holographic principle, Rev. Mod. Phys.
74 (2002) 825 [hep-th/0203101] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys.
B 453 (1995) 281 [hep-th/9503016] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev.
D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].
ADS
Google Scholar
M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres, Mem. Acad. St. Petersbourg
6 (1850) 385 [INSPIRE].
Google Scholar
R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys.
720 (2007) 403 [astro-ph/0601672] [INSPIRE].
J.Z. Simon, Higher Derivative Lagrangians, Nonlocality, Problems and Solutions, Phys. Rev.
D 41 (1990) 3720 [INSPIRE].
ADS
MathSciNet
Google Scholar
X. Jaen, J. Llosa and A. Molina, A Reduction of order two for infinite order lagrangians, Phys. Rev.
D 34 (1986) 2302 [INSPIRE].
ADS
Google Scholar
C.P. Burgess and M. Williams, Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs, JHEP
08 (2014) 074 [arXiv:1404.2236] [INSPIRE].
ADS
Article
Google Scholar
I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev.
D 22 (1980) 343 [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Goon and K. Hinterbichler, Superluminality, Black Holes and Effective Field Theory, arXiv:1609.00723 [INSPIRE].
J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.
D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.
D 68 (2003) 084005 [Erratum ibid.
D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP
02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP
11 (2016) 117 [arXiv:1609.07477] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev.
D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
ADS
MathSciNet
Google Scholar
M.J. Duff, Quantum corrections to the Schwarzschild solution, Phys. Rev.
D 9 (1974) 1837 [INSPIRE].
ADS
Google Scholar
B.K. El-Menoufi, Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy, JHEP
05 (2016) 035 [arXiv:1511.08816] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.F. Donoghue and B.K. El-Menoufi, Covariant non-local action for massless QED and the curvature expansion, JHEP
10 (2015) 044 [arXiv:1507.06321] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon Non-Renormalization, JHEP
11 (2016) 100 [arXiv:1606.02295] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.
116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].