Skip to main content

Generalized superconductors and holographic optics. Part II

A preprint version of the article is available at arXiv.

Abstract

Using linear response theory, we analyze the electromagnetic response functions of generalized holographic superconductors, in AdS-Schwarzschild and single R-charged black hole backgrounds in four dimensions. By introducing momentum dependent vector mode perturbations, the response functions for these systems are studied numerically, including the effects of backreaction. This complements and completes the probe limit analysis for these backgrounds initiated in our previous work (arXiv:1305.6273). Our numerical analysis indicates a negative Depine-Lakhtakia index for both the backgrounds studied, at low enough frequencies. The dependence of the response functions on the backreaction parameter and the model parameters are established and analyzed with respect to similar backgrounds in five dimensions.

References

  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  4. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  5. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    ADS  Article  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A General class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [INSPIRE].

    ADS  Article  Google Scholar 

  8. A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich et al., First order superconducting phase transition in CeCoIn(5), Phys. Rev. Lett. 89 (2002) 137002 [cond-mat/0203310] [INSPIRE].

    ADS  Article  Google Scholar 

  9. D.R. Smith, W.J. Padilla, J. Willie, D.C. Vier, S.C. Nemat-Nasser and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184.

    ADS  Article  Google Scholar 

  10. J.B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85 (2000) 3966.

    ADS  Article  Google Scholar 

  11. R.A. Depine and A. Lakhtakia, A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity, Micro. Opt. Tech. Lett. 41 (2004) 315.

    Article  Google Scholar 

  12. V.M. Agranovich and Y.N. Gartstein, Spatial dispersion and negative refraction of light, Phys.-Usp. 49 (2006) 1029.

    ADS  Article  Google Scholar 

  13. D. Forcella, J. Zaanen, D. Valentinis and D. van der Marel, Electromagnetic properties of viscous charged fluids, Phys. Rev. B 90 (2014) 035143 [arXiv:1406.1356] [INSPIRE].

    ADS  Article  Google Scholar 

  14. A. Amariti, D. Forcella, A. Mariotti and G. Policastro, Holographic Optics and Negative Refractive Index, JHEP 04 (2011) 036 [arXiv:1006.5714] [INSPIRE].

    ADS  Article  Google Scholar 

  15. X.-H. Ge, K. Jo and S.-J. Sin, Hydrodynamics of RN AdS 4 black hole and Holographic Optics, JHEP 03 (2011) 104 [arXiv:1012.2515] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. P. Phukon and T. Sarkar, R-Charged Black Holes and Holographic Optics, JHEP 09 (2013) 102 [arXiv:1305.2745] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  17. F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon Plasmas at Finite Baryon Density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].

    ADS  Article  Google Scholar 

  18. S.M. Anlage, The physics and applications of superconducting metamaterials, Journal of Optics 13 (2011) 024001 [arXiv:1004.3226].

    ADS  Article  Google Scholar 

  19. X. Gao and H.-b. Zhang, Refractive index in holographic superconductors, JHEP 08 (2010) 075 [arXiv:1008.0720] [INSPIRE].

  20. A. Amariti, D. Forcella, A. Mariotti and M. Siani, Negative Refraction and Superconductivity, JHEP 10 (2011) 104 [arXiv:1107.1242] [INSPIRE].

    ADS  Article  Google Scholar 

  21. S. Mahapatra, P. Phukon and T. Sarkar, Generalized Superconductors and Holographic Optics, JHEP 01 (2014) 135 [arXiv:1305.6273] [INSPIRE].

    Article  Google Scholar 

  22. A. Dey, S. Mahapatra and T. Sarkar, Generalized Holographic Superconductors with Higher Derivative Couplings, JHEP 06 (2014) 147 [arXiv:1404.2190] [INSPIRE].

    ADS  Article  Google Scholar 

  23. A. Amariti, D. Forcella and A. Mariotti, Negative Refractive Index in Hydrodynamical Systems, JHEP 01 (2013) 105 [arXiv:1107.1240] [INSPIRE].

    ADS  Article  Google Scholar 

  24. D. Forcella, A. Mezzalira and D. Musso, Electromagnetic response of strongly coupled plasmas, JHEP 11 (2014) 153 [arXiv:1404.4048] [INSPIRE].

    ADS  Article  Google Scholar 

  25. L.D. Landau and E.M. Lifshitz, Electrodynamics of continous media, Pergamon press, Oxford U.K. (1984).

    Google Scholar 

  26. M. Dressel and G. Gruner, Electrodynamics of solids, Cambridge University Press (2002).

  27. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  28. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  29. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density Dependence of Transport Coefficients from Holographic Hydrodynamics, Prog. Theor. Phys. 120 (2008) 833 [arXiv:0806.4460] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  31. G.T. Horowitz and J.E. Santos, General Relativity and the Cuprates, JHEP 06 (2013) 087 [arXiv:1302.6586] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. M.W. McCall, A. Lakhtakia and W.S. Weiglhofer, The negative index of refraction demystified, Eur. J. Phys. 23 (2002) 353 [physics/0204067].

    Article  Google Scholar 

  33. M. Cvetič, M.J. Duff, P. Hoxha, J.T. Liu, H. Lü et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    ADS  Article  Google Scholar 

  34. A. Dey, S. Mahapatra and T. Sarkar, Very General Holographic Superconductors and Entanglement Thermodynamics, JHEP 12 (2014) 135 [arXiv:1409.5309] [INSPIRE].

    ADS  Article  Google Scholar 

  35. R. Flauger, E. Pajer and S. Papanikolaou, A Striped Holographic Superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].

    ADS  Google Scholar 

  36. K. Maeda, M. Natsuume and T. Okamura, Dynamic critical phenomena in the AdS/CFT duality, Phys. Rev. D 78 (2008) 106007 [arXiv:0809.4074] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Mahapatra.

Additional information

ArXiv ePrint: 1411.6405

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, S. Generalized superconductors and holographic optics. Part II. J. High Energ. Phys. 2015, 148 (2015). https://doi.org/10.1007/JHEP01(2015)148

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2015)148

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • AdS-CFT Correspondence