ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.
B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ADS
Google Scholar
W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).
S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev.
D 7 (1973) 1888 [INSPIRE].
ADS
Google Scholar
E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev.
D 13 (1976) 3333 [INSPIRE].
ADS
Google Scholar
K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett.
B 648 (2007) 312 [hep-th/0612165] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett.
B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].
ADS
Article
Google Scholar
J.R. Espinosa and M. Quirós, Novel Effects in Electroweak Breaking from a Hidden Sector, Phys. Rev.
D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
ADS
Google Scholar
L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP
09 (2010) 021 [arXiv:1006.5916] [INSPIRE].
ADS
Article
Google Scholar
R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett.
B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].
ADS
Article
Google Scholar
W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev.
D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].
ADS
Google Scholar
S. Iso, N. Okada and Y. Orikasa, Classically conformal B − L extended Standard Model, Phys. Lett.
B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].
ADS
Article
Google Scholar
C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP
04 (2013) 060 [arXiv:1301.4224] [INSPIRE].
ADS
Article
Google Scholar
T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev.
D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
ADS
Google Scholar
C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev.
D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].
ADS
Google Scholar
O. Antipin, M. Mojaza and F. Sannino, Conformal Extensions of the Standard Model with Veltman Conditions, Phys. Rev.
D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].
ADS
Google Scholar
M. Hashimoto, S. Iso and Y. Orikasa, Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale, Phys. Rev.
D 89 (2014) 016019 [arXiv:1310.4304] [INSPIRE].
ADS
Google Scholar
S. Abel and A. Mariotti, Novel Higgs Potentials from Gauge Mediation of Exact Scale Breaking, Phys. Rev.
D 89 (2014) 125018 [arXiv:1312.5335] [INSPIRE].
ADS
Google Scholar
M. Hashimoto, S. Iso and Y. Orikasa, Radiative Symmetry Breaking from Flat Potential in various U(1)′
models, Phys. Rev.
D 89 (2014) 056010 [arXiv:1401.5944] [INSPIRE].
ADS
Google Scholar
J. Kubo, K.S. Lim and M. Lindner, Electroweak Symmetry Breaking via QCD, Phys. Rev. Lett.
113 (2014) 091604 [arXiv:1403.4262] [INSPIRE].
ADS
Article
Google Scholar
A. Kobakhidze and K.L. McDonald, Comments on the Hierarchy Problem in Effective Theories, JHEP
07 (2014) 155 [arXiv:1404.5823] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
H. Davoudiasl and I.M. Lewis, Right-Handed Neutrinos as the Origin of the Electroweak Scale, Phys. Rev.
D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].
ADS
Google Scholar
K. Kannike, A. Racioppi and M. Raidal, Embedding inflation into the Standard Model — more evidence for classical scale invariance, JHEP
06 (2014) 154 [arXiv:1405.3987] [INSPIRE].
ADS
Article
Google Scholar
M. Lindner, S. Schmidt and J. Smirnov, Neutrino Masses and Conformal Electro-Weak Symmetry Breaking, JHEP
10 (2014) 177 [arXiv:1405.6204] [INSPIRE].
ADS
Article
Google Scholar
C.T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev.
D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].
ADS
Google Scholar
K. Allison, C.T. Hill and G.G. Ross, Ultra-weak sector, Higgs boson mass and the dilaton, Phys. Lett.
B 738 (2014) 191 [arXiv:1404.6268] [INSPIRE].
ADS
Article
Google Scholar
A. Farzinnia and J. Ren, Strongly First-Order Electroweak Phase Transition and Classical Scale Invariance, Phys. Rev.
D 90 (2014) 075012 [arXiv:1408.3533] [INSPIRE].
ADS
Google Scholar
V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP
08 (2014) 026 [arXiv:1403.4953] [INSPIRE].
ADS
Article
Google Scholar
K. Allison, C.T. Hill and G.G. Ross, An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton, Phys. Lett. B (2014) [arXiv:1409.4029] [INSPIRE].
T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett.
B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].
ADS
Article
Google Scholar
R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev.
D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].
ADS
Google Scholar
K. Ishiwata, Dark Matter in Classically Scale-Invariant Two Singlets Standard Model, Phys. Lett.
B 710 (2012) 134 [arXiv:1112.2696] [INSPIRE].
ADS
Article
Google Scholar
T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett.
106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].
ADS
Article
Google Scholar
M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett.
A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].
ADS
Article
Google Scholar
M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP
12 (2013) 076 [arXiv:1310.4423] [INSPIRE].
ADS
Article
Google Scholar
A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett.
B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].
ADS
Article
Google Scholar
E. Gabrielli et al., Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev.
D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].
ADS
Google Scholar
S. Benić and B. Radovčić, Electroweak breaking and Dark Matter from the common scale, Phys. Lett.
B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].
ADS
Google Scholar
J. Guo and Z. Kang, Higgs Naturalness and Dark Matter Stability by Scale Invariance, arXiv:1401.5609 [INSPIRE].
A. Farzinnia and J. Ren, Higgs Partner Searches and Dark Matter Phenomenology in a Classically Scale Invariant Higgs Boson Sector, Phys. Rev.
D 90 (2014) 015019 [arXiv:1405.0498] [INSPIRE].
ADS
Google Scholar
J. Kubo, K.S. Lim and M. Lindner, Gamma-ray Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of the Standard Model, JHEP
09 (2014) 016 [arXiv:1405.1052] [INSPIRE].
ADS
Article
Google Scholar
W. Altmannshofer, W.A. Bardeen, M. Bauer, M. Carena and J.D. Lykken, Light Dark Matter, Naturalness and the Radiative Origin of the Electroweak Scale, JHEP
01 (2015) 032 [arXiv:1408.3429] [INSPIRE].
ADS
Article
Google Scholar
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett.
112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
ADS
Article
Google Scholar
XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys.
C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].
Article
Google Scholar
D.C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].
B. Holdom, Two U(1)′
s and Epsilon Charge Shifts, Phys. Lett.
B 166 (1986) 196 [INSPIRE].
ADS
Article
Google Scholar
C. Garcia-Cely, A. Ibarra and E. Molinaro, Dark matter production from Goldstone boson interactions and implications for direct searches and dark radiation, JCAP
11 (2013) 061 [arXiv:1310.6256] [INSPIRE].
ADS
Article
Google Scholar
J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z
′
-mediated dark matter and the galactic center gamma ray excess, JHEP
08 (2014) 131 [arXiv:1405.7691] [INSPIRE].
ADS
Article
Google Scholar
E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP
02 (2011) 100 [arXiv:1011.3300] [INSPIRE].
ADS
Article
Google Scholar
K. Griest, Cross-Sections, Relic Abundance and Detection Rates for Neutralino Dark Matter, Phys. Rev.
D 38 (1988) 2357 [Erratum ibid.
D 39 (1989) 3802] [INSPIRE].
E.W. Kolb and M.S. Turner, Frontiers in Physics. Vol. 69: The Early Universe, Westview Press, Boulder U.S.A. (1990).
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.
571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
Article
Google Scholar
D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, in Particle Dark Matter, G. Bertone eds., Cambridge University Press, Cambridge U.K. (2013), pg. 347 [arXiv:1002.1912] [INSPIRE].
J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev.
D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].
ADS
Google Scholar
M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP
03 (2011) 051 [Erratum ibid.
1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
J. Conrad, Indirect Detection of WIMP Dark Matter: a compact review, arXiv:1411.1925 [INSPIRE].