Skip to main content

Majorana dark matter in a classically scale invariant model

A preprint version of the article is available at arXiv.

Abstract

We analyze a classically scale invariant extension of the Standard Model with a dark gauge U(1) X broken by a doubly charge scalar Φ leaving a remnant Z 2 symmetry. Dark fermions are introduced as dark matter candidates and for anomaly reasons we introduce two chiral fermions. Due to classical scale invariance, bare mass term that would mix these two states is absent and they end up as stable Majorana fermions N 1 and N 2. We calculate cross sections for N a N a → ϕϕ, N a N a X μ ϕ and N 2 N 2N 1 N 1 annihilation channels. We put constraints to the model from the Higgs searches at the LHC, dark matter relic abundance and dark matter direct detection limits by LUX. The dark gauge boson plays a crucial role in the Coleman-Weinberg mechanism and has to be heavier than 680 GeV. The viable mass region for dark matter is from 470 GeV up to a few TeV. In the case when the two Majorana fermions have different masses, two dark matter signals at direct detection experiments could provide a distinctive signature of this model.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

  4. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  5. E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].

    ADS  Google Scholar 

  6. K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

    ADS  Article  Google Scholar 

  8. J.R. Espinosa and M. Quirós, Novel Effects in Electroweak Breaking from a Hidden Sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].

    ADS  Google Scholar 

  9. L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    ADS  Article  Google Scholar 

  10. R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

    ADS  Article  Google Scholar 

  11. W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

    ADS  Google Scholar 

  12. S. Iso, N. Okada and Y. Orikasa, Classically conformal BL extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    ADS  Article  Google Scholar 

  13. C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    ADS  Article  Google Scholar 

  14. T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  15. C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

    ADS  Google Scholar 

  16. O. Antipin, M. Mojaza and F. Sannino, Conformal Extensions of the Standard Model with Veltman Conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].

    ADS  Google Scholar 

  17. M. Hashimoto, S. Iso and Y. Orikasa, Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale, Phys. Rev. D 89 (2014) 016019 [arXiv:1310.4304] [INSPIRE].

    ADS  Google Scholar 

  18. S. Abel and A. Mariotti, Novel Higgs Potentials from Gauge Mediation of Exact Scale Breaking, Phys. Rev. D 89 (2014) 125018 [arXiv:1312.5335] [INSPIRE].

    ADS  Google Scholar 

  19. M. Hashimoto, S. Iso and Y. Orikasa, Radiative Symmetry Breaking from Flat Potential in various U(1) models, Phys. Rev. D 89 (2014) 056010 [arXiv:1401.5944] [INSPIRE].

    ADS  Google Scholar 

  20. J. Kubo, K.S. Lim and M. Lindner, Electroweak Symmetry Breaking via QCD, Phys. Rev. Lett. 113 (2014) 091604 [arXiv:1403.4262] [INSPIRE].

    ADS  Article  Google Scholar 

  21. A. Kobakhidze and K.L. McDonald, Comments on the Hierarchy Problem in Effective Theories, JHEP 07 (2014) 155 [arXiv:1404.5823] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  22. H. Davoudiasl and I.M. Lewis, Right-Handed Neutrinos as the Origin of the Electroweak Scale, Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].

    ADS  Google Scholar 

  23. K. Kannike, A. Racioppi and M. Raidal, Embedding inflation into the Standard Modelmore evidence for classical scale invariance, JHEP 06 (2014) 154 [arXiv:1405.3987] [INSPIRE].

    ADS  Article  Google Scholar 

  24. M. Lindner, S. Schmidt and J. Smirnov, Neutrino Masses and Conformal Electro-Weak Symmetry Breaking, JHEP 10 (2014) 177 [arXiv:1405.6204] [INSPIRE].

    ADS  Article  Google Scholar 

  25. C.T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].

    ADS  Google Scholar 

  26. K. Allison, C.T. Hill and G.G. Ross, Ultra-weak sector, Higgs boson mass and the dilaton, Phys. Lett. B 738 (2014) 191 [arXiv:1404.6268] [INSPIRE].

    ADS  Article  Google Scholar 

  27. A. Farzinnia and J. Ren, Strongly First-Order Electroweak Phase Transition and Classical Scale Invariance, Phys. Rev. D 90 (2014) 075012 [arXiv:1408.3533] [INSPIRE].

    ADS  Google Scholar 

  28. V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].

    ADS  Article  Google Scholar 

  29. K. Allison, C.T. Hill and G.G. Ross, An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton, Phys. Lett. B (2014) [arXiv:1409.4029] [INSPIRE].

  30. T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].

    ADS  Article  Google Scholar 

  31. R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].

    ADS  Google Scholar 

  32. K. Ishiwata, Dark Matter in Classically Scale-Invariant Two Singlets Standard Model, Phys. Lett. B 710 (2012) 134 [arXiv:1112.2696] [INSPIRE].

    ADS  Article  Google Scholar 

  33. T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

    ADS  Article  Google Scholar 

  34. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].

    ADS  Article  Google Scholar 

  35. M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].

    ADS  Article  Google Scholar 

  36. A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

    ADS  Article  Google Scholar 

  37. E. Gabrielli et al., Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

    ADS  Google Scholar 

  38. S. Benić and B. Radovčić, Electroweak breaking and Dark Matter from the common scale, Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].

    ADS  Google Scholar 

  39. J. Guo and Z. Kang, Higgs Naturalness and Dark Matter Stability by Scale Invariance, arXiv:1401.5609 [INSPIRE].

  40. A. Farzinnia and J. Ren, Higgs Partner Searches and Dark Matter Phenomenology in a Classically Scale Invariant Higgs Boson Sector, Phys. Rev. D 90 (2014) 015019 [arXiv:1405.0498] [INSPIRE].

    ADS  Google Scholar 

  41. J. Kubo, K.S. Lim and M. Lindner, Gamma-ray Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of the Standard Model, JHEP 09 (2014) 016 [arXiv:1405.1052] [INSPIRE].

    ADS  Article  Google Scholar 

  42. W. Altmannshofer, W.A. Bardeen, M. Bauer, M. Carena and J.D. Lykken, Light Dark Matter, Naturalness and the Radiative Origin of the Electroweak Scale, JHEP 01 (2015) 032 [arXiv:1408.3429] [INSPIRE].

    ADS  Article  Google Scholar 

  43. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

    ADS  Article  Google Scholar 

  44. XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].

    Article  Google Scholar 

  45. D.C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].

  46. B. Holdom, Two U(1) s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Article  Google Scholar 

  47. C. Garcia-Cely, A. Ibarra and E. Molinaro, Dark matter production from Goldstone boson interactions and implications for direct searches and dark radiation, JCAP 11 (2013) 061 [arXiv:1310.6256] [INSPIRE].

    ADS  Article  Google Scholar 

  48. J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z -mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].

    ADS  Article  Google Scholar 

  49. E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].

    ADS  Article  Google Scholar 

  50. K. Griest, Cross-Sections, Relic Abundance and Detection Rates for Neutralino Dark Matter, Phys. Rev. D 38 (1988) 2357 [Erratum ibid. D 39 (1989) 3802] [INSPIRE].

  51. E.W. Kolb and M.S. Turner, Frontiers in Physics. Vol. 69: The Early Universe, Westview Press, Boulder U.S.A. (1990).

  52. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

    Article  Google Scholar 

  53. D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, in Particle Dark Matter, G. Bertone eds., Cambridge University Press, Cambridge U.K. (2013), pg. 347 [arXiv:1002.1912] [INSPIRE].

  54. J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].

    ADS  Google Scholar 

  55. M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].

  56. J. Conrad, Indirect Detection of WIMP Dark Matter: a compact review, arXiv:1411.1925 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branimir Radovčić.

Additional information

ArXiv ePrint: 1409.5776

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benić, S., Radovčić, B. Majorana dark matter in a classically scale invariant model. J. High Energ. Phys. 2015, 143 (2015). https://doi.org/10.1007/JHEP01(2015)143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2015)143

Keywords

  • Beyond Standard Model
  • Higgs Physics