Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
8D likelihood effective Higgs couplings extraction framework in h → 4ℓ
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Higgs boson production cross-section measurements and their EFT interpretation in the $$4\ell $$ 4 ℓ decay channel at $$\sqrt{s}=$$ s = 13 TeV with the ATLAS detector

16 October 2020

G. Aad, B. Abbott, … ATLAS Collaboration

Measuring the ratio of HW W and HZZ couplings through W +W −H production

21 August 2018

Cheng-Wei Chiang, Xiao-Gang He & Gang Li

Measurement of the triple Higgs coupling at a HE-LHC

11 March 2019

Samuel Homiller & Patrick Meade

Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4 $$\ell $$ ℓ decay channel at $$\sqrt{s}$$ s = 13 TeV

12 October 2020

G. Aad, B. Abbott, … ATLAS Collaboration

NNLOPS description of the H→ b b ¯ $$ b\overline{b} $$ decay with MiNLO

01 June 2020

Wojciech Bizoń, Emanuele Re & Giulia Zanderighi

On the future of Higgs, electroweak and diboson measurements at lepton colliders

16 December 2019

Jorge de Blas, Gauthier Durieux, … Ayan Paul

Fiducial cross sections for the lepton-pair-plus-photon decay mode in Higgs production up to NNLO QCD

12 January 2022

X. Chen, T. Gehrmann, … A. Huss

On the reinterpretation of non-resonant searches for Higgs boson pairs

05 February 2021

Alexandra Carvalho, Florian Goertz, … Anamika Aggarwal

Updated global SMEFT fit to Higgs, diboson and electroweak data

26 June 2018

John Ellis, Christopher W. Murphy, … Tevong You

Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 23 January 2015

8D likelihood effective Higgs couplings extraction framework in h → 4ℓ

  • Yi Chen1,
  • Emanuele Di Marco2,
  • Joe Lykken2,
  • Maria Spiropulu1,
  • Roberto Vega-Morales2,3,4 &
  • …
  • Si Xie1 

Journal of High Energy Physics volume 2015, Article number: 125 (2015) Cite this article

  • 353 Accesses

  • 14 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present an overview of a comprehensive analysis framework aimed at performing direct extraction of all possible effective Higgs couplings to neutral electroweak gauge bosons in the decay to electrons and muons, the so called ‘golden channel’. Our framework is based primarily on a maximum likelihood method constructed from analytic expressions of the fully differential cross sections for h → 4ℓ and for the dominant irreducible \( q\overline{q} \) → 4ℓ background, where 4ℓ = 2e2μ, 4e, 4μ. Detector effects are included by an explicit convolution of these analytic expressions with the appropriate transfer function over all center of mass variables. Utilizing the full set of observables, we construct an unbinned detector-level likelihood which is continuous in the effective couplings. We consider possible ZZ, Zγ, and γγ couplings simultaneously, allowing for general CP odd/even admixtures. A broad overview is given of how the convolution is performed and we discuss the principles and theoretical basis of the framework. This framework can be used in a variety of ways to study Higgs couplings in the golden channel using data obtained at the LHC and other future colliders.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. C.A. Nelson, Correlation between decay planes in Higgs boson decays into W pair (into Z pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].

    ADS  Google Scholar 

  4. A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].

    ADS  Google Scholar 

  5. D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W − , or \( t\overline{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].

    ADS  Google Scholar 

  6. V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e − colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].

    ADS  Google Scholar 

  7. T. Arens and L.M. Sehgal, Energy spectra and energy correlations in the decay H →ZZ →μ + μ − μ + μ −, Z. Phys. C 66 (1995) 89 [hep-ph/9409396] [INSPIRE].

    ADS  Google Scholar 

  8. S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in H → ZZ → ℓ +1 ℓ −1 ℓ +2 ℓ −2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V.A. Kovalchuk, Model-independent analysis of CP-violation effects in decays of the Higgs boson into a pair of the W and Z bosons, J. Exp. Theor. Phys. 107 (2008) 774 [INSPIRE].

    Article  ADS  Google Scholar 

  12. Q.-H. Cao, C.B. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].

    ADS  Google Scholar 

  13. Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

    ADS  Google Scholar 

  14. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  15. J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].

    ADS  Google Scholar 

  17. S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

    ADS  Google Scholar 

  18. D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].

    ADS  Google Scholar 

  19. Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs signal and background in the 2e2μ golden channel, JHEP 01 (2013) 182 [arXiv:1211.1959] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘Higgs’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].

  21. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. P. Avery et al., Precision studies of the Higgs boson decay channel H → ZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].

    ADS  Google Scholar 

  23. J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].

  24. J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].

    Article  ADS  Google Scholar 

  25. CMS collaboration, Search for a Higgs boson in the decay channel H → ZZ (*) → \( q\overline{q}{\ell}^{-}{\ell}^{+} \) in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].

    ADS  Google Scholar 

  26. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  27. CMS collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Menon, T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125-126 GeV, Phys. Rev. D 89 (2014) 095021 [arXiv:1301.5404] [INSPIRE].

    ADS  Google Scholar 

  29. Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel h → ZZ * → 4ℓ, Int. J. Mod. Phys. A 29 (2014) 1450086 [arXiv:1309.4171] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].

    Article  ADS  Google Scholar 

  32. I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].

    ADS  Google Scholar 

  33. M. Chen et al., The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC, Phys. Rev. D 89 (2014) 034002 [arXiv:1310.1397] [INSPIRE].

    ADS  Google Scholar 

  34. G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in h → Zℓ + ℓ −, Eur. Phys. J. C 74 (2014) 2798 [arXiv:1310.2574] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. Chen and R. Vega-Morales, Extracting effective Higgs couplings in the golden channel, JHEP 04 (2014) 057 [arXiv:1310.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond geolocating: constraining higher dimensional operators in H → 4ℓ with off-shell production and more, arXiv:1403.4951 [INSPIRE].

  37. Y. Chen, R. Harnik and R. Vega-Morales, Probing the Higgs couplings to photons in h → 4ℓ at the LHC, Phys. Rev. Lett. 113 (2014) 191801 [arXiv:1404.1336] [INSPIRE].

    Article  ADS  Google Scholar 

  38. CMS collaboration, Constraints on anomalous HVV interactions using H → 4ℓ decays, CMS-PAS-HIG-14-014, CERN, Geneva Switzerland (2014).

  39. CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, arXiv:1411.3441 [INSPIRE].

  40. Y. Chen et al., Technical note for 8D likelihood effective Higgs couplings extraction framework in the golden channel, arXiv:1410.4817 [INSPIRE].

  41. Y. Chen, Precision measurement of the 125 GeV Higgs boson discovered in proton-proton collisions at \( \sqrt{s} \) = 7, 8 TeV with the CMS detector at the LHC, thesis in preparation for Ph.D., California Institute of Technology, U.S.A.

  42. R. Vega-Morales, The Higgs boson as a window to beyond the standard model, thesis in fulfillment of Ph.D. requirements, Northwestern University, U.S.A. (2013) [INSPIRE].

  43. B. Bradie, A friendly introduction to numerical analysis: with C and MATLAB materials on website; int. ed., Prentice-Hall, Englewood Cliffs U.S.A. (2006).

  44. P. Artoisenet and O. Mattelaer, MadWeight: automatic event reweighting with matrix elements, PoS(CHARGED2008)025 [INSPIRE].

  45. P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].

    Article  ADS  Google Scholar 

  46. P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling \( t\overline{t}h \) via the matrix element method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Falkowski and R. Vega-Morales, Exotic Higgs decays in the golden channel, JHEP 12 (2014) 037 [arXiv:1405.1095] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4ℓ, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  49. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays H → ZZ/WW → 4ℓ, Nucl. Phys. Proc. Suppl. 160 (2006) 131 [hep-ph/0607060] [INSPIRE].

    Article  ADS  Google Scholar 

  50. N.E. Adam et al., Higgs working group summary report, arXiv:0803.1154 [INSPIRE].

  51. J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289.

    Article  ADS  Google Scholar 

  52. CMS collaboration, CMS physics: technical design report volume 1: detector performance and software, CERN-LHCC-2006-001, CERN, Geneva Switzerland (2006).

  53. CMS collaboration, CMS 2013 public electron performance results webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/EGMElectronsMoriond2013.

  54. CMS collaboration, Electron performance with 19.6 fb−1 of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector, CMS-DP-2013-003, CERN, Geneva Switzerland (2013).

  55. Y. Chen and R. Vega-Morales, Scrutinizing the golden channel webpage, http://yichen.me/project/GoldenChannel/.

  56. N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  60. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W − , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].

    Article  ADS  Google Scholar 

  61. F. James, MINUIT function minimization and error analysis: reference manual version 94.1, CERN, Geneva Switzerland (1994) [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Lauritsen Laboratory of Physics, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 92115, U.S.A.

    Yi Chen, Maria Spiropulu & Si Xie

  2. Theoretical Physics Department, Fermilab, P.O. Box 500, Batavia, IL, 60510, U.S.A.

    Emanuele Di Marco, Joe Lykken & Roberto Vega-Morales

  3. Laboratoire de Physique Théorique d’Orsay, UMR8627-CNRS, Université Paris-Sud 11, Building 210, F-91405, Orsay Cedex, France

    Roberto Vega-Morales

  4. Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, U.S.A.

    Roberto Vega-Morales

Authors
  1. Yi Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Emanuele Di Marco
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Joe Lykken
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Maria Spiropulu
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Roberto Vega-Morales
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Si Xie
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Roberto Vega-Morales.

Additional information

ArXiv ePrint: 1401.2077

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Di Marco, E., Lykken, J. et al. 8D likelihood effective Higgs couplings extraction framework in h → 4ℓ . J. High Energ. Phys. 2015, 125 (2015). https://doi.org/10.1007/JHEP01(2015)125

Download citation

  • Received: 12 April 2014

  • Revised: 17 October 2014

  • Accepted: 25 December 2014

  • Published: 23 January 2015

  • DOI: https://doi.org/10.1007/JHEP01(2015)125

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Hadron-Hadron Scattering
  • Higgs physics
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.