Skip to main content

Advertisement

SpringerLink
Minimal Liouville gravity correlation numbers from Douglas string equation
Download PDF
Download PDF
  • Open Access
  • Published: 28 January 2014

Minimal Liouville gravity correlation numbers from Douglas string equation

  • Alexander Belavin1,2,3,
  • Boris Dubrovin4,5,6 &
  • Baur Mukhametzhanov1,7 

Journal of High Energy Physics volume 2014, Article number: 156 (2014) Cite this article

  • 608 Accesses

  • 18 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We continue the study of (q, p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of [1,2], where Lee-Yang series (2, 2s + 1) was studied, to (3, 3s + p 0) Minimal Liouville Gravity, where p 0 = 1, 2. We demonstrate that there exist such coordinates τ m,n on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates τ m,n are related in a non-linear fashion to the natural coupling constants λ m,n of the perturbations of Minimal Lioville Gravity by the physical operators O m,n . We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the conformal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature [3–5].

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. G.W. Moore, N. Seiberg and M. Staudacher, From loops to states in 2D quantum gravity, Nucl. Phys. B 362 (1991) 665 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Belavin and A. Zamolodchikov, On correlation numbers in 2D minimal gravity and matrix models, J. Phys. A 42 (2009) 304004 [arXiv:0811.0450] [INSPIRE].

    MathSciNet  Google Scholar 

  3. M. Goulian and M. Li, Correlation functions in Liouville theory, Phys. Rev. Lett. 66 (1991) 2051 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142 (2005) 183 [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Belavin and A. Zamolodchikov, Integrals over moduli spaces, ground ring and four-point function in minimal Liouville gravity, Theor. Math. Phys. 147 (2006) 729 [Teor. Mat. Fiz. 147 (2006) 339] [INSPIRE].

  6. A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Knizhnik, A.M. Polyakov and A. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Zamolodchikov, Higher equations of motion in Liouville field theory, Int. J. Mod. Phys. A 19S2 (2004) 510 [hep-th/0312279] [INSPIRE].

  10. V. Kazakov, A.A. Migdal and I. Kostov, Critical properties of randomly triangulated planar random surfaces, Phys. Lett. B 157 (1985) 295 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Kazakov, Ising model on a dynamical planar random lattice: exact solution, Phys. Lett. A 119 (1986) 140 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Kazakov, The appearance of matter fields from quantum fluctuations of 2D gravity, Mod. Phys. Lett. A 4 (1989) 2125 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Staudacher, The Yang-Lee edge singularity on a dynamical planar random surface, Nucl. Phys. B 336 (1990) 349 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Brézin and V. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.R. Douglas and S.H. Shenker, Strings in less than one-dimension, Nucl. Phys. B 335 (1990) 635 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. D.J. Gross and A.A. Migdal, Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990) 127 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [INSPIRE].

  18. P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Di Francesco and D. Kutasov, World sheet and space-time physics in two-dimensional (super)string theory, Nucl. Phys. B 375 (1992) 119 [hep-th/9109005] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.R. Douglas, Strings in less than one-dimension and the generalized K − D − V hierarchies, Phys. Lett. B 238 (1990) 176 [INSPIRE].

    Article  ADS  Google Scholar 

  21. I. Krichever, The dispersionless Lax equations and topological minimal models, Commun. Math. Phys. 143 (1992) 415 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. B. Dubrovin, Integrable systems in topological field theory, Nucl. Phys. B 379 (1992) 627 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. B. Dubrovin, Geometry of 2D topological field theories, in Integrable Systems and Quantum Groups, Montecatini Terme Italy 1993, M. Francaviglia and S. Greco eds., Springer Lect. Notes Math. 1620 (1996) 120 [hep-th/9407018] [INSPIRE].

  24. G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. IHES 61 (1985) 5.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Topological strings in d < 1, Nucl. Phys. B 352 (1991) 59 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. P.H. Ginsparg, M. Goulian, M. Plesser and J. Zinn-Justin, (p, q) string actions, Nucl. Phys. B 342 (1990) 539 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. I.M. Gelfand and L.A. Dickey, Fractional powers of operators and Hamiltonian systems, Funct. Anal. Appl. 10 (1976) 259.

    Article  Google Scholar 

  28. M. Adler, On a trace functional for formal pseudodifferential operators and the symplectic structure of Korteweg-de Vries equations, Invent. Math. 50 (1979) 219 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. L.D.Landau Institute for Theoretical Physics, prospect academica Semenova 1a, 142432, Chernogolovka, Russia

    Alexander Belavin & Baur Mukhametzhanov

  2. Moscow Institute of Physics and Technology, Insitutsky pereulok 9, 141700, Dolgoprudny, Russia

    Alexander Belavin

  3. Institute for Information Transmission Problems, Bol’shoy karetni pereulok 19, 127994, Moscow, Russia

    Alexander Belavin

  4. International School of Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy

    Boris Dubrovin

  5. N.N. Bogolyubov Laboratory for Geometrical Methods in Mathematical Physics, Moscow State University “M.V.Lomonosov”, Leninskie Gory 1, 119899, Moscow, Russia

    Boris Dubrovin

  6. V.A. Steklov Mathematical Institute, Gubkina street 8, 119991, Moscow, Russia

    Boris Dubrovin

  7. Department of Physics, Harvard University, 17 Oxford street, 02138, Cambridge, U.S.A.

    Baur Mukhametzhanov

Authors
  1. Alexander Belavin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Boris Dubrovin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Baur Mukhametzhanov
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Baur Mukhametzhanov.

Additional information

ArXiv ePrint: 1310.5659

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Belavin, A., Dubrovin, B. & Mukhametzhanov, B. Minimal Liouville gravity correlation numbers from Douglas string equation. J. High Energ. Phys. 2014, 156 (2014). https://doi.org/10.1007/JHEP01(2014)156

Download citation

  • Received: 05 November 2013

  • Accepted: 16 December 2013

  • Published: 28 January 2014

  • DOI: https://doi.org/10.1007/JHEP01(2014)156

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • Conformal and W Symmetry
  • Matrix Models
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.